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Abstract—Several IoT protocols have been introduced in order to

provide an efficient communication for resource-constrained

applications. However, their performance is not as yet well

understood. To address this issue, we evaluated and compared

four communication protocols, namely, CoAP, MQTT, XMPP,

and WebSocket. For this, we implemented a smart parking

application using open source software for these protocols and

measured their response time by varying the traffic load.
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I. INTRODUCTION

An IoT application typically involves a large number of

deployed and interconnected sensors and gateways. The

sensors measure the physical environment and send the data to

a gateway. The gateway aggregates the data from various

sensors and then sends it to a server/broker. Meanwhile,

clients that are interested to receive sensor data connect to the

server to obtain the data. The integration of sensor devices into

the Internet requires an IP-compatible protocol stack which is

bandwidth-efficient, energy-efficient and capable of working

with limited hardware resources. The lack of optimized

application protocols for sensors can cause performance

degradation in terms of bandwidth usage and battery lifetime

for wireless sensors.

IoT is a big place, with room for many application

protocols suitable for sensors. The fundamental goals of all

protocols differ, the architectures differ, and the capabilities

differ. It is important to understand the class of use that each

of these protocols addresses and choose the one for an

application carefully, especially when key system

requirements such as performance, QoS, interoperability, fault

tolerance and security are taken into account.

In this paper, we report on the response time of the
following communication protocols: CoAP, MQTT, XMPP, and

WebSocket, measured for different traffic loads.

The MQTT protocol is used for collecting device data and

communicating it to servers, XMPP is used for connecting

devices to people. It can support distributed message

exchanges between processes on a single node (Intra Device).

However XMPP was not designed for high performance

message exchanges within the same mode and is more

appropriate when used to communicate between nodes or with

internet based applications. CoAP is a specialized web transfer

protocol for use in constrained nodes and networks. It can be

used for data collection in systems that do not require very

high performance, real-time data sharing or real-time device

control. In many cases data is collected for subsequent

“offline” processing. The WebSocket (WS) standard provides

bi-directional Web communication and connection

management. WebSocket is a good IoT solution if the devices

can afford the WebSocket payload. Other protocols, such as,

SMQ and CoSIP are also gaining traction. All these protocols

are positioned as real-time publish-subscribe IoT protocols,

with support for millions of devices. Depending on how you

define “real time” (seconds, milliseconds or microseconds)

and “things” (WSN node, multimedia device, personal

wearable device, medical scanner, engine control, etc.), the

protocol selection for an application is critical.

II. RELATED WORK

Several surveys have provided description and

comparative analysis of IoT application layer protocols

without providing real data measurements, see [1], [2], [3],

[4]. All these surveys identified CoAP, MQTT, XMPP,

AMQP and REST services as the most representative

protocols for internet of things. The article in [2] provides a

description of these key protocols their architectures and

strengths and weaknesses. The authors argued about suitability

of these protocols for the IoT by considering reliability,

security, and energy consumption aspects without any

statistical comparisons between the protocols.

Several works experimentally tested the most popular IoT

application layer protocols, typically comparing two selected

protocols. In [5] the authors compared MQTT and CoAP by

creating a middleware component in order to perform testing.

They found that MQTT has a lower latency for smaller packet

loss than CoAP, and in contrast, higher latency than CoAP for

higher packet loss. Two IoT protocols CoAP and MQTT have

been assessed in terms of energy consumption, bandwidth

utilization and reliability [6]. According to the result, CoAP is

the most efficient in terms of energy consumption and

bandwidth usage while MQTT provides high reliability. [7]

provide a qualitative and quantitative comparison between

MQTT and CoAP when used as smartphone application

protocols. In [8] performance tests are conducted by

implementing the experimental design for three different

techniques in a LAN for supporting real-time communication

with XMPP on the Web.

In paper [9] CoAP, WebSocket and MQTT are evaluated

for their performance in terms of protocol efficiency, strictly



related to the overhead, and average Round Trip Time (RTT)

with no consideration of increased load. Authors in [10]

evaluated the performance, energy consumption, and resource

usage characteristics of IoT protocols including CoAP,

MQTT, MQTT-SN, WebSocket, and TCP for varying packet

size. [11] compared web performance of MQTT, AMQP,

XMPP, and DDS by measuring the latency of sensor data

message delivery and the message throughput rate for different

message size and format.

There are only a few studies available on protocol

efficiency, strictly related to overhead, RTT, packet

fragmentation, QoS and retransmission. To the best of our

knowledge there is no performance study of the response time

with varying traffic loads. In this work we take an

experimental approach by considering a real IoT scenario. We

implemented a smart parking application using the following

application layer protocols: CoAP, MQTT, XMPP and

WebSocket. Being implemented on the same platform, the

comparison between theses protocols is fair and realistic. The

measured performance metrics is the average response time

and its confidence interval and the 99th percentile for varying

server utilizations.

III. PROTOCOLS OVERVIEW

In this section, we review briefly the four protocols under

study.

A. CoAP (Constrained Application Protocol)

CoAP [12] is a one-to-one protocol for transferring state

information between client and server over the Internet using

UDP, and it is primarily designed for constrained devices.

Clients may send GET, PUT, POST and DELETE resource

requests to the server. CoAP messages are encoded in a simple

binary format. Packets are simple to generate and can be

parsed in place without consuming extra RAM in constrained

devices.

We used the CoAP libcoap library that provides a coap-

client which is a wget-like tool to generate the resource

requests. Below is an example of the commands used to send a

coap-uri request for a DELETE message:

./coap-client -m delete coap://[::1]/location -e "Message to be

sent"

coap-URI = "coap:" "//" host [ ":" port ] path-abempty [ "?"

query ]

B. MQTT (Message Queuing Telemetry Transport)

MQTT [16] is a client/server publish/subscribe messaging

protocol designed for lightweight M2M communications. The

protocol runs over TCP/IP to provide ordered, lossless,

bidirectional connections. MQTT supports three QoS levels

and messages can be encrypted with SSL/TLS. MQTT brokers

may require username and password authentication from

clients to connect.

We used the Eclipse Mosquitto (EPL/EDL licensed)

message broker that implements the MQTT protocol versions

3.1 and 3.1.1. It provides an MQTT server which can handle

publish and subscribe messages sent from the clients. Below is

an example.

./client/mosquitto_pub -t “topic“ -m “Message to be sent”

./client/mosquitto_sub -C 1 -t “topic“

C. XMPP (eXtensible Messaging and Presence Protocol)

XMPP [15] is a distributed client/server architecture and

TCP communications protocol based on XML that enables

near-real-time exchange of structured data between two or

more connected entities. XMPP provides a wide range of

applications, such as, instant messaging, multi-party chat,

voice and video calls, collaboration, and lightweight

middleware. It provides SASL authentication and has built-in

TLS encryption.

We used the Openfire server licensed under the Open

Source Apache License. It uses the only widely adopted open

protocol for instant messaging, XMPP (also called Jabber).

D. MQTT over WebSocket

WebSocket [18] operate over TCP as an upgrade to a

standard HTTP connection allowing for full-duplex, low-

latency communication between a server and a client. In

MQTT over WebSocket, an MQTT message is encapsulated

within a WebSocket packet. Messages over WebSocket are

sent in frames, which have only 2 bytes overhead. WebSocket

are suitable as transport for MQTT because the

communication is bidirectional, ordered and lossless.

We used the following software: a) HiveMQ Broker, a

simple and secure, highly scalable enterprise MQTT broker

designed for lowest latency and high throughput; b) the

HiveMQ Plugin, which allows plugin development on top of

the broker to achieve required functionality, and c) the Paho

python client library, which provides a client class with

support for both MQTT v3.1 and v3.1.1 on Python 2.7 or 3.x.

IV. SMART PARKING SYSTEM

In this paper, we use a smart parking testbed to evaluate

and compare the above four communication protocols. Smart

parking makes it easier for drivers to find a spot in a car

parking to park their car and avoids the overhead of moving

around in the parking looking for an empty slot.

We considered a car parking with a sensor attached to

every parking position. These sensors sense whether a parking

spot is occupied or not. The architecture consists of a

server/client model. Every sensor has a client that sends status

information (occupied/empty) as a PUT or a DELETE

message to update their status at the server.

Also, there is a sensor attached to every car and as a car

arrives at the parking lot, the sensor sends a GET request to

reserve an empty space in the parking. If there is an available

spot, the server reserves it and sends the exact location of the

reserved spot back to the car sensor. Cars can also come in and

park at an empty position without requesting the server to

reserve a spot. In this case, the sensor at the parking spot sends

a PUT request to the server to indicate that it has become

occupied. The server stores the information of all the occupied

and empty spots in the parking, so that it can serve requests

from GET clients.



The following assumptions were made:

● The car arrival rate is assumed to follow a Poisson

distribution. Let λ1 and λ2 be the arrival rates of

reservations and the arrival rate of cars entering the

parking lot without reservation respectively.

● The time a car stays at a parking spot follows an

exponential distribution with a mean 1/ξ.

● The length of the communication protocol server queue

is assumed to be large enough to accommodate all

messages pending execution.

● The communication between clients and server is

assumed to be fully reliable with zero packet loss.

In order to implement the testbed, we considered a parking

space of 100 cars depicted as a 10x10 array with a sensor

attached at every location. The server stores the status of every

spot as either occupied or empty. The simulation runs three

client threads namely PUT, DELETE, and GET for each of the

three types of request described above. The GET thread

generates client requests for reservation according to a Poisson

distribution with rate λ1. The PUT thread generates messages

due to cars occupying a parking spot without going through

the reservation process, according to a Poisson distribution

with rate λ2. The DELETE thread generates messages due to

cars departing from the parking lot after staying for an

exponentially distributed time with mean 1/ξ. The server

synchronizes the parking map according to the requests it

receives.

The three client threads and the server run on the same

machine, which is an Ubuntu 14.04 64 bit system with Intel

Core i5-5200U CPU @ 2.20GHz * 4. As a result the

propagation delay is zero. A programmable propagation delay

can be easily introduced, but we were only interested in the

response time of the protocols without including two-way

propagation delays.

We also note that the exponential assumption could be

easily replaced by a non-bursty general distribution. The

service time for the GET, PUT and DELETE message was

first calculated by issuing a single request to the server which

was idle. Let 1/μ1, 1/μ2, and 1/μ3 be the time required by the

idle server to process a single GET, PUT and DELETE

request respectively.

The testbed can be seen as consisting of 2 queueing

systems. The first one is an M/M/s/K queue, where s=K=100

and it depicts the parking lot consisting of the 100 parking

spots with an arrival rate of λ1 + λ2 and a mean service time of

each server equal to the mean waiting time of a car in parking

lot, i.e., 1/ξ. Let η be the rate of departure of cars from the

parking lot, then η can be calculated as (λ1 + λ2)(1- pb), where pb
is the blocking probability that a car will be blocked due to the

parking lot being full. pb can be obtained using the Erlang-B

formula.

The second queueing model is an M/M/1 queue and it

depicts the server as implemented with the given protocol

where GET, PUT and DELETE messages queue up to get

processed. In order for this queue to be stable, U< 1, where U=

λ1/μ1 + λ2/μ2 + η/μ3. U can be seen as the workload offered to

the server. CoAP and MQTT maintain a single server, and

therefore U is the server utilization. However, this is not the

case in XMPP and WebSocket because they spawn multiple

threads depending on the arrival rate. For presentation

purposes we will refer to U as the server utilization.

We picked a value for 1/ξ for each protocol, and then used

the above M/M/100/100 queue to calculate all possible

combinations of λ1 and λ2 so that pb = 0. In this case η = λ1 + λ2.

Subsequently, we chose a pair of λ1 and λ2 that corresponds to

20%, 40%, 60% and 80% utilization of the server. We could

have used any combination of λ1 and λ2, since we can calculate

η, and thus the total arrival rate to the server. Then, vary λ1 and

λ2 so that to obtain a given server utilization. However, this

does not make any difference since we run the experiments

using the server utilization.

The experiments are run as follows. The PUT and GET

threads issue messages with an exponential inter-arrival time

of 1/λ1 and 1/λ2 respectively. Once a car occupies a position, its

parking time is generated from an exponential distribution

with a mean 1/ξ. The departure time is placed into an event list

which is kept sorted in an ascending manner. The next

departure to occur is the one at the top of the event list. We

note that the simulation clock is the real clock. For a given

protocol, each experiment corresponds to a given utilization.

The chosen values of λ1 and λ2 were such that they were as

close as possible, i.e., λ1/λ2 ~ 1. This can be varied, but we do

not expect any difference in the results for a given utilization.

We ran each experiment for 1000 GETs and 1000 PUTs,

which creates 2000 DELETE messages. We measured the

amount of time it takes to process each message including

waiting time in the protocol server queue. (Recall that the

propagation delay is zero.) These measurements were done at

thread level by starting the clock as soon as a request is sent to

the server, i.e., the time when a process thread starts, and

noting the time when it arrives back after being processed at

the server. The difference in time is stored as the response

time for that message. Consequently, we obtained three

separate sets of samples of response times, 1000 GET

samples, 1000 PUT samples and 2000 DELETE samples. For

each sample we calculated the mean, standard deviation and

the 99th of the response time. The three samples were also

combined to calculate similar overall statistics. The order in

which they were combined is immaterial as far as these

statistics are concerned. The results of the interval estimation

of the mean response time are presented in the next section.

The unit of time is seconds.

V. PERFORMANCE EVALUATION

A. CoAP:- libcoap library

We implemented the three types of messages using the

GET, PUT and DELETE commands provided by CoAP. The

service time for a PUT and a DELETE request is found to be

the same, but the service time of a GET request is significantly

less. The three commands belong to three different classes and

the libcoap server library handles them differently. Because of

this, the commands have different priorities and different

service times.



Fig. 1 Mean Response Time vs libcoap Server Utilization

As can be seen in Fig. 1, as the server utilization is

increased, the mean response time of DELETE and PUT also

goes up as expected. In the case of GET, the response time

decreases as the utilization increases from 20% to 40%. This

can be explained by the fact that CoAP endpoints cache

responses in order to reduce the response time and network

bandwidth consumption on future, equivalent requests. A

validation and freshness mechanism is used for this purpose

[12]. The PUT and DELETE commands of CoAP have non-

cacheable response codes while the GET command’s response

codes are cached. Hence the response time for each individual

GET process includes the time to process the request and

return the response code plus the time to write the response in

cache. In view of this, when the arrival rate for GET messages

increases, the server skips some of the cache writes for new

similar codes. Thus the mean response time for GET messages

reduces as the arrival rate increases, while PUT and DELETE

process remain unaffected as their is no concept of caching.

The response time again increases as the server utilization

increases to 60%, this can be explained by the fact that

initially the CoAP server provides a buffer of size k bytes to

handle client requests and as the number of clients connecting

to the server increases, it increases the buffer size. This

requires buffer reallocation, which is added up to the response

time. Further as the utilization increases to 80% we observe a

similar decrease in the mean response time because of making

use of cached responses with a larger buffer this time.

B. MQTT:- Mosquitto Broker

With MQTT’s publisher/subscriber model, we used the

publish message to implement PUT and DELETE requests,

and the subscribe message followed by a publish message to

implement a GET request. Hence, we found that the service

time of the PUT and DELETE requests were equal but that of

the GET request was higher.

Fig. 2 Mean Response Time vs Mosquitto Broker Utilization

From Fig. 2, we can see that the mean response time of

every individual process increases (or lies within the

confidence interval of each other) as the server utilization is

increased.

C. XMPP:- Openfire Server & Smack Client

We used XMPP’s Instant Messaging feature to implement

the three different requests and hence the service time for all

the three messages was found to be equal. From Fig. 3, we see

that as the load increases the mean response time increases for

each individual DELETE, PUT and GET client requests but

the change is not significant. This is because it opens a new

TCP connection for each client.

Fig. 3 Mean Response Time vs Openfire Server Utilization

From Fig. 3, we can see that the mean response time for

the GET and PUT processes are similar as they have the same

arrival rate while that of the DELETE is lower. This is because

the server gives priority to messages with the highest presence

priority as "most available"(M) resource [13]. It maintains a

stack of users connected to the server with their presence

status as "available" and sends the response back to the "most



available" (i.e., the last arrived client first). This results in a

lower mean response time for DELETE messages because of

their higher arrival rate.

D. WebSocket:- HiveMQ Broker and Paho Python Client

We used the publish request to implement PUT and

DELETE messages while a subscribe request to implement the

GET message. The service time of the PUT and DELETE

messages was found to be equal while that of the GET

message was greater.

Fig. 4 Mean Response Time vs HiveMQ Server Utilization

From Fig. 4, we see that the mean response times of each

individual process goes down on increasing server utilization.

This is because the WebSocket protocol also has the ability to

multiplex several streams simultaneously over the same

connection. Hence, as the arrival rate increases, it skips few

handshakes and the new client connects over the same

websocket, resulting in a decrease in the mean response time.

Fig. 5 Mean Response Time of the Four Protocols vs Server Utilization

E. Comparisons of the Protocols

Fig. 5 shows the overall mean response time comparison

for the protocols for different server utilizations. It can be

concluded from the results that MQTT and CoAP have a much

higher response time, since they use a message queue to

process client requests, as compared to XMPP and MQTTWS

which are multi-threaded.

Fig. 6 Mean Response Time for CoAP & MQTT vs Server Utilization

Fig. 6 shows the comparison of the two message queue

based protocols. We see that CoAP takes advantage of using

UDP for communication and hence performs better at lower

utilization. MQTT performs better at higher server utilizations

making use of some extra optimization features of the

protocol.

Fig. 7 Mean Response Time for XMPP & WebSocket vs Server Utilization

Fig. 7 shows the comparison of the two multi-threaded

protocols XMPP and WebSocket. We can see that XMPP

performs better at lower server utilization as it transfers



messages directly over a TCP connection while WebSocket

ues an extra WebSocket handshake. As load increases

WebSocket takes advantage of multiplexing and hence the

mean response time goes down.

VI. CONCLUSIONS AND FUTURE WORK

We implemented a smart parking application using CoAP,

MQTT, XMPP and WebSocket as application layer protocols

in order to measure and compare their response time for

different loads. The results showed that at lower server

utilization, CoAP performs best between the two message

queue based protocols. When the application can support

multi-threading, then XMPP performs the best for lower

server utilization. As we increase the server utilization, the

mean response time of the protocols increases except that of

WebSocket which follows an opposite trend. This is because it

multiplexes several streams onto the same connection due to

higher arrival rates, resulting in less connection terminations

and consequently fewer handshakes. So, at higher server

utilization WebSocket outperforms the other three protocols

given that the application has enough CPU to allow multi-

threading. Also, both XMPP and WebSocket provide

horizontal scalability while this feature is missing in CoAP

and MQTT being prone to single point of failure. We also

found that XMPP serves the processes in the order of most

available first while others are based on FIFO scheduling.

The 99th percentiles are not reported due to lack of space,

but they follow the same pattern as the mean response times.

They can be found along with the interval estimates of the

mean response times and the input values to the experiments

in [19].
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