
A Performance Analysis of Inter–Domain QoS

Routing Schemes Based on Path Computation

Elements

Geza Geleji and Harry G. Perros

Department of Computer Science

North Carolina State University

Raleigh, NC 27695–8206

ggeleji@ncsu.edu, hp@csc.ncsu.edu

Yufeng Xin

Renaissance Computing Institute

Chapel Hill, NC 27517

yxin@renci.org

Tsegereda Beyene

Cisco Systems, Inc.

tbeyene@cisco.com

Abstract—The Path Computation Element architecture has
been proposed to separate forwarding and routing functionality
in small–scale connection–oriented networks, such as MPLS,
GMPLS, and ASON. If routing is performed by dedicated
units, more sophisticated methods, such as multi–constraint
QoS routing, may be implemented than currently widespread
practices (i.e. OSPF, IS–IS, BGP, etc.). In this paper, we present
a performance analysis of several distributed multi–domain
QoS routing algorithms that may be implemented on the PCE
platform.

I. INTRODUCTION

It has been argued that the Internet should perform ad-

mission control in order to support applications with hard

real–time QoS requirements, see, for instance, Shenker [15].

Feamster et al. [8] have proposed the Routing Control Plat-

form to separate inter–domain routing from forwarding. They

claim RCP is incrementally deployable and provides benets

even if not deployed across the whole network, such as the

facilitation of trafc engineering, simpler policy expression,

and enforceable consistency of routes.

The Path Computation Element (PCE) architecture (RFC

4655 [7]) has been recently proposed as a new approach

to deal with the challenges posed by constraint–based path

computation in single–domain or small multi–domain MPLS,

GMPLS, ASON or similar networks for the purposes of Qual-

ity of Service (QoS) provision. The architecture completely

separates routing and forwarding by designating Path Com-

putation Elements (PCEs) in the network, in accordance with

the refactoring of the IP control plane proposed by Rexford et

al. [13]. In this paper, the authors propose to factor IP control

functionality into two planes, the dissemination plane, whose

“primary objective is the timely and reliable dissemination of

information to and from network elements”, and the decision

plane, which should “make all decisions driving network be-

havior, including reachability, routing, access control, security,

and interface conguration”. PCE units constitute an inter–

domain path computation plane [14], whose sole responsibility

is to supply routers and hosts (i.e. the forwarding plane) with

Corresponding author: Geza Geleji

paths fullling a desired set of QoS constraints. The advantage

of this approach is that PCE nodes will have an up–to–date,

domain–wide view of the network state while still relying on

distributed algorithms, and therefore, they will be able to make

routing decisions subject to QoS constraints more effectively.

Also, both the routing and forwarding tasks may be performed

by separate, more specialized equipment. Proponents of the

architecture suggest that it will facilitate the implementation

of more complex path computation schemes. Rexford et al.

[13] also argued that the approach will simplify the IP con-

trol plane. The PCE architecture supports mechanisms that

maintain the condentiality of routing information pertaining

to a domain (see Bradford et al. [6]). In general, according to

Boucadair et al. [5], such functional decomposition is desirable

when trying to achieve a business–process view of various

tasks to be performed by network operators. Disadvantages

include the possibly high delays in connection establishment if

each connection request triggers a path computation procedure

(Feamster et al. [8]), and the architecture’s supposed inability

to deal with the requirements of large–scale networks, like the

Internet (Farrel et al. [7]).

Unfortunately, there is relatively little research reported in

the open literature on the implementation and performance of

PCE–based routing and as a consequence, many aspects of the

standard have not been worked out yet. The most important of

these is how the PCEs cooperate with each other: PCEs may

form a large, distributed, possibly redundant system dedicated

to serving path computation requests as efciently as possible.

Such a system needs to have an up–to–date, easily accessible

database of available network resources (referred to as the

Trafc Engineering Database in the PCE documents). Since

this is not possible in the general case, certain restrictions have

to be made. For instance, the authors of the original RFC,

Farrel et al. [7], suggest limiting the range of action of the

path computation system to a few domains, and the PCEs may

only be used if both endpoints of a requested path lie within

these domains. This limits the algorithmic complexity and

decreases connection set–up times. Efcient multi–constrained

routing still constitutes a signicant challenge (McAuley et al.



[12]), especially across domains (Grifn et al. [10]). A good

example of a bridging solution is the meta–QoS–class plane–

based approach (Levis et al. [11] and Grifn et al. [10]), which

relies on class descriptions such as “very low one–way transit

delay” and “low delay and any packet loss rate” and leaves

the implementation details to the provider. Unfortunately, this

scheme does not support hard end–to–end QoS guarantees.

The PCE–based architecture, in general, is not expected to

provide optimal paths (Yannuzzi et al. [18]), instead, it tries

to reduce the challenges posed by the multi–domain (Yannuzzi

et al. [18] and Aslam et al. [3]) and multi–constraint (McAuley

et al. [12]) requirements, especially when hard QoS guarantees

are desired, such as end–to–end delay, jitter and packet loss

rate.

In the paper, we use simulation to investigate the feasibility

of PCE–based QoS routing schemes in small multi–domain

networks by measuring blocking probability, network utiliza-

tion, routing efciency in terms of path cost, and connection

set–up times. We study the performance of simple, sub–

optimal, distributed path computation algorithms, comparing

the results to ideal solutions, such as Dijkstra’s algorithm

executed on the whole network. The algorithms presented

herein are based on ideas presented by Aslam et al. [3] (e.g.

the Per–Domain methods rely on the loose route renement

detailed in their paper) and Vasseur et al. [17] (the Per–Domain

Backward Tree method closely resembles BRPC).

The paper is organized as follows. In the next section, we

rst describe the main features of the simulator, then the path

computation algorithms. The results are presented in Section

III-B, and the conclusions are summarized in Section IV.

II. THE PCESIM SIMULATOR

We have developed a discrete event simulator, referred to as

PCESIM, which simulates the exchange of control messages,

such as connection set–up requests, path computation requests

and responses between Path Computation Clients (PCC) and

PCEs, inter–PCE messages (Path Computation Request, Path

Computation Reply) and error notications, as discussed in

the PCEP documents [2], [16]. We simulated a multi–domain

network consisting of physical nodes interconnected by unidi-

rectional links. Each node belongs to exactly one domain and

is assigned a pair of geographic coordinates, based on which,

the message propagation delay along a link is calculated,

assuming that links lie on a great circle on the surface of

a sphere approximately the size of the Earth. Links have

a pre–dened capacity from which bandwidth is allocated

exclusively to individual connections based on their QoS

requirements. We assume that each node has enough capacity

to process all the packets, even if all links are fully utilized.

We also assume that each domain contains at least one PCE

attached to one of its nodes.

The simulator takes a description of the network topology

and a sequence of connection set–up requests to be executed

on the network as input. The requests are processed on a First–

Come–First–Served basis. The simulator was written in C++

and an automatically generated documentation of the PCESIM

source code is available on–line [9].

A. The PCE–based Inter–Domain QoS Routing Schemes

A connection set–up request provides the following infor-

mation: source node, destination node, bandwidth require-

ments, desired QoS class, and desired QoS parameters. In this

paper, we only consider the top priority QoS class dened

for sources which transmit continuously at a constant bit rate

and the information transmitted is time sensitive. Examples

are unencoded video and circuit emulation. For this type of

service, the only bandwidth that needs to be specied is the

maximum transmission rate. This is the bandwidth that needs

to be allocated on each link along the path. This QoS class

typically receives top priority in the output pot buffer of a

router. Therefore, in theory, packets belonging to this class

will never suffer queueing delay before they are transmitted

out. This means that the end–to–end delay is equal to the

propagation delay plus the time spent in each router along

the path. The latter component is very small compared to the

propagation delay, and therefore, is ignored in this study. As

for the packet loss, we assume that it is negligible because

this QoS class will more likely have a high space priority.

In view of the above assumptions, the inter–domain algo-

rithms studied in this paper simply attempt to minimize the

cost which is the propagation delay.

All of the three procedures rely on a pre–computed AS path,

i.e. a sequence of domains through which the path will be

routed (this sequence is supplied to the simulator as input). We

assume that control messages are sent through control channels

over the same IP data plane used to transmit the packets of

each connection. These control channels are assumed to have

sufcient capacity for transmitting control messages, and they

do not interfere with the bandwidth used for the IP data plane.

Each PCE communicates with any other PCE in the network

over the shortest possible path.

We have implemented the following path computation al-

gorithms:

1) Per–Domain Backward Method: A PCE executing this

algorithm forwards each incoming path computation request to

a PCE in the last domain of the path, which we will refer to as

the “end PCE”. Since PCEs are aware of the interdomain links

to all adjacent domains, the end PCE nds the cheapest path

from the destination node to the domain before the last and

allocates the requested amount of bandwidth along the newly

computed path segment, which is terminated at an egress node,

call it A, of the domain before the last. When the path segment

has been set up, the last PCE forwards the request to a PCE in

the domain before the last, whose job is to nd the cheapest

path from an egress node of the preceding domain, call it

B, to A. When this is done, resources are allocated along

the new path segment and the two path segments are merged

to form a single segment, from B to the destination node.

This procedure is repeated until the rst (source) domain is

reached, where a PCE nds a path segment from the requested

source to its egress node, which marks the beginning of



the segment to the destination node. If the establishment of

the path fails for any reason, all associated resources in all

domains are freed immediately. This algorithm nds shortest

paths within domains given that the egress node has been xed.

In view of this, it is unlikely that it will nd the shortest path

between the source and the destination; however, its relatively

low computational complexity and communicational overhead

make it a promising candidate.

2) The Per–Domain Ping–Pong Method: This method relies

on the same principle as the previous algorithm. However, a

PCE receiving a setup request, instead of forwarding it to the

last domain, will rst nd the shortest path to an ingress node

of the second domain, which will, in turn, nd the shortest

path to an ingress node of the third domain, and so on, until

the last domain is reached. As opposed to the above algorithm,

instead of reserving capacities along the path segments imme-

diately after the segment has been computed, reservations are

done separately after the path computation process has been

completed, starting from the end PCE and moving backwards

towards the originating PCE. The name “ping–pong” intends

to illustrate the fact that path computation happens in the

forward direction, and reservation goes backwards along the

same path). Also, the per–domain backward method uses the

shortest path to forward the setup request from the rst PCE

to the last one. In the per–domain backward path computation

algorithm, the request is sent from the rst PCE to the last one

along the shortest path and then travels backwards from PCE to

PCE. In the ping–pong method, the request travels from PCE

to PCE in both directions, thus taking a longer time to set up

the connection. As the reservations are not done immediately

after the path computation, individual requests have to contend

for resources. On failure of allocating a resource, all associated

resources are freed immediately.

3) The Per–Domain Backward Tree Method: This algo-

rithm tries to optimize the cost of the computed path by nding

trees of paths from a node to a given neighbor domain. It is

similar to the per–domain backward method, except instead

of propagating a sub–optimal path from the destination node

towards the source, a tree of all available paths is forwarded.

This is an implementation of the Backward Recursive Path

Computation (BRPC) algorithm presented by Vasseur et al.

[17], with one minor difference, namely, the setup request

is forwarded along an optimal path from the PCE in the

source domain to the PCE in the destination domain. The

original BRPC method forwards the request from one PCE

to a PCE in the next domain, which implies a sub–optimal

path and additional processing delays. As the tree travels

along the AS path in reverse direction, a PCE in each domain

extends it by adding a set of paths from the egress nodes

of the preceding domain to the leaves of the tree, keeping

in the tree only the shortest paths between the leaves and

the root. The time it takes for this algorithm to execute is

similar to that of the backwards method. This procedure causes

more communication overhead as trees have to be propagated

instead of path segments, however, it compensates for this

shortcoming by nding paths that are closer to optimality.

Obviously, this method does not necessarily nd the optimal

path either because it is constrained by the pre–determined AS

path which may not be optimal in itself. Also, the algorithm

will not be able to nd an existing path if it does not comply

with the specied AS path (e.g. there is a path available

along the domain sequence 1–2–3–4–3–4–5, but the specied

constraint is 1–2–3–4–5). Note that in our implementation, the

PCE responsible for path selection will select the minimum

cost path from the tree. If that path has become unavailable

due to other connections, the path computation process will

fail and no other paths from the tree are considered.

4) Reference Algorithms: To provide a basis of comparison

for the performance of these algorithms, we have also imple-

mented three reference algorithms. In all cases, we assume

that path computation happens instantaneously and no control

messages are sent between PCEs. The rst one, referred to

as the Flat Path Computation method, is Dijkstra’s shortest

path algorithm applied to the whole network. Results from

this algorithm will serve as theoretical bounds for all other

algorithms.

Our second reference algorithm, called Instantaneous Per–

Domain Backward Method, is the per–domain backward

method, except that execution does not involve control mes-

sage exchanges and, therefore, takes place instantaneously.

Results from this method are expected to provide a bound

on the per–domain backward and ping–pong algorithms.

The third reference procedure, referred to as the Instanta-

neous Per–Domain Backward Tree Method, is similar to the

per–domain tree–based method without message exchanges,

that is, execution of the algorithm takes place instantaneously.

III. SIMULATION ENVIRONMENT AND RESULTS

We have conducted several experiments using the algo-

rithms discussed above on various test networks presented

below. In this section we present some of our most illustrative

results along with the details of the simulation environment.

A. Test Networks

Our experiments have been conducted on ve different test

congurations, each of which uses a test network derived from

the ones presented in Figure 1. Both maps are assumed to

be on the surface of a sphere with a radius of 6372.8 km,

thus, grid divisions correspond approximately to geographic

latitudes and longitudes with a distance of approximately 111

km. In all experiments, the capacity of each link is 10 units

and the signal propagation speed is assumed to be 200 km/ms.

The shaded areas constitute domains. Nodes represented by a

square contain one PCE and nodes represented by circles do

not. Each domain has exactly one PCE.

Figure 1a shows a linear test network, which consists of

a sequence of domains. In this network, the AS path can be

easily and uniquely determined for any connection request.

Through this fact, the number of possible paths that may be

assigned to any particular connection is very limited (they

all traverse the same AS path), and, as a consequence, we

expect the optimal and suboptimal path computation methods



(a) Linear

(b) Square Mesh

Fig. 1: Test Networks

to behave similarly. We will also use two variations of this

network: the vertically stretched and the horizontally stretched

linear networks. The former was obtained by moving nodes

2, 4, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22, 24, 26 and 28

(the top two rows in Figure 1.a) North by 20◦, a distance of

approximately 2000 km. The latter is a result of increasing

the length of all interdomain links from 2◦ to 20◦ (again, the

displacement is roughly 2000 km).

The square mesh test network (see Figure 1b) consists of

domains with a higher degree of connectivity to other domains.

We expect this network to demonstrate the differences in

routing efciency between near–optimal (e.g. the at method

and the tree–based methods) and sub–optimal methods (i.e.

per–domain) to a greater extent than the linear network. We

have also studied a slight variation of this network: the full

mesh domains version, in which, as the name implies, each

domain is augmented to a full mesh while the inter–domain

connections remain unaltered.

B. Numeric Results

The connection setup requests were generated by a Poisson

process with inter–arrival times ranging from 1/16 to 256
milliseconds. The inter–arrival time is the horizontal axis of

all of the graphs presented in this paper. The holding time, i.e.

the time a connection is up, follows an exponential distribution

with a mean of 4 ms, and the requested bandwidth is a

uniformly distributed integer with a minimum of 1 and a

maximum of 10 units. Each experiment consists of 250000

connection requests.

For each experiment, we calculate the following perfor-

mance metrics: the blocking probability (percent of blocked

connection requests), the mean network utilization (the time

average of link utilization averages for all links), the mean

cost (i.e. propagation delay) of the paths assigned to each

successfully routed connection, the mean length or hop count

of the successfully routed connections, the mean admission

delay, i.e. the mean time required to successfully set up a

connection (including the time for resource allocation), and the

mean rejection time, i.e. the mean time required to determine

that the connection can not be admitted. For high values of the

inter–arrival time, most of the connections will be admitted,

and, as a consequence, the sample sizes for measuring the

rejection delay will be small, causing high variation. However,

most data points represent the mean of the sampled random

variable with a very narrow condence interval, which is not

shown on the graphs, since it is not discernible.

Note that the range of inter–arrival times used includes val-

ues signicantly smaller than the mean holding time. Though

these cases do not represent real–life situations, we have

included them to demonstrate the behavior of the algorithms

under very high trafc loads.

The colors used in the diagrams correspond to the rout-

ing algorithms as follows: Flat Path Computation (gray),

Instantaneous Per–Domain Backward Method (blue), Per–

Domain Backward Method (red), Per–Domain Ping–Pong

Method (black), Per–Domain Backward Tree Method (orange),

Instantaneous Per–Domain Backward Tree Method (green).

1) Test Conguration No. 1: the unmodied linear network:

Looking at the chart of the blocking probability (Figure 2a),

one can see a pronounced difference between the real and the

reference routing algorithms, which is due to the fact that the

reference algorithms do not exchange control messages and

therefore, they execute instantaneously. The delay resulting

from message exchanges has a signicant effect on blocking;

the longer a connection setup takes, the more likely it is

to be blocked as the amount of available resources may

change during the setup process. However, the difference

between the optimal and sub–optimal reference algorithms

(gray curve versus blue and green) is minimal, illustrating

the fact that certain networks are capable of achieving a

high routing efciency without an optimal routing algorithm.

Among the distributed algorithms, the per–domain tree–based

method (orange) gives the best performance. The per–domain

ping–pong method is the worst, because it relies on sub–

optimal control paths in both directions (note that the other two

forward the connection setup request to the destination node

along an optimal control path). The per–domain backward

method (red) lies between the other two; its performance is not

very good at high loads, but improves as the load decreases.

For low levels of trafc, it outperforms the per–domain tree–

based method. This could be attributed to the fact that it starts

to make the resource reservation as soon as the intra–domain

path segments are identied, while the per–domain tree–based

method only reserves the capacity when the complete path tree

has been calculated. However, the difference due to this effect

is negligible.

Note that the per–domain backward method achieves the

same level of blocking as the per–domain ping–pong method

at a higher level of resource utilization (see Figure 2b). This is

due to the fact that, on the average, it routes connections along

longer paths (see Figure 2d; the graph depicting the mean path



length in number of hops is, qualitatively speaking, almost

indistinguishable). It appears that the per–domain ping–pong

method favors connections that may be routed over shorter

paths. This fact may be veried by looking at Figure 2c,

which shows the distance fairness of these two algorithms

and of the at method (gray line), which has been included

for comparison purposes, when the mean inter–arrival time is

1/4 (thick, solid lines and circles) and 2 (thin, dotted lines and

diamonds). Each data point represents the ratio of blocked calls

for which the shortest possible path (in an empty network)

between the endpoints has a cost (i.e. delay) in the range

[(x − 10k), x], where x is given on the horizontal axis in

milliseconds. The per–domain backward method (red) admits

a greater number of long–distance connections, conversely, the

per–domain ping–pong method favors short–distance connec-

tions. As the load is decreased (dotted lines), the at method

shows a much higher degree of fairness, while the same can

not be said for the Per–Domain Ping–Pong method. The Per–

Domain Backward method lies in between the two and it still

favors short–distance connections.

Figure 2d shows the mean path costs of each of the algo-

rithms. As the trafc load decreases, the algorithms converge

to a path cost which reects their routing efciency. Based on

this value, two basic classes may be distinguished: the class of

near–optimal and the class of sub–optimal methods. The at

path computation (gray) and the tree–based methods (green

and orange) constitute the former, the rest the latter. Obviously,

for this topology, the tree–based methods perform nearly as

well as the at method, while all of the per–domain methods

show some decit. This is true even for very low loads,

which suggests that the reason may be the sub–optimality

of the path computation algorithms. It is interesting to note

that for high loads, the optimal at path computation method

(gray) and the instantaneous per–domain method (blue) do

not differ signicantly neither in terms of blocking, nor in

terms of routing efciency. As will be seen below, where other

topologies are studied, this due to the network topology rather

than the path computation methods.

Finally, Figure 2e shows the mean rejection delay (in msecs)

for the distributed algorithms that rely on control message

exchanges. This is the mean time it takes until a connection

is rejected due to lack of available resources. The per–domain

ping–pong method has the lowest values starting at about 4.5

when the mean inter–arrival time is 1/16 and monotonically

increases to 8.8 when the mean inter–arrival time is 256. The
per–domain tree–based method shows values that are a little

higher. Since the per–domain backward method (red) and the

per–domain tree–based method (orange) admit connections

using similar mechanisms, their admission delays do not

differ signicantly. The minimal difference present may be

explained by differences in routing efciency and blocking

characteristics. The somewhat lower delay of the per–domain

ping–pong method can not be attributed to better performance,

but rather to the fact that this algorithm routes a higher ratio

of low–distance connections (see the discussion for Figure 2c

above). Note that the per–domain ping–pong method relies on

sub–optimal control paths in both directions, while the other

two use an optimal path in the forward direction.

On average, the per–domain tree–based method (orange)

takes a lot longer to reject connections than the per–domain

backward method does. This is a direct consequence of the

tree–based method having to compute rst a full tree of end–

to–end paths before it can reserve resources (and determine

failure or success). Since the per–domain backward method

reserves each intra–domain segment as soon as it has been

computed, it will immediately fail during computation if a

segment can not be set up through a particular domain. The

per–domain ping–pong method shows a signicantly lower

delay, which, again, is not likely to be attributed to better

performance, but rather to the distance fairness characteristics.

2) Test Conguration No. 2: the vertically stretched linear

network: Vertically stretching the linear network increases the

performance gap between the three distributed algorithms and

their reference counterparts. For instance, the gap between the

two groups is increased from the value shown in Figure 2a

(approximately 0.2) to about 0.3. Some aspects of performance

(e.g. mean path lengths in hop–counts) do not change signi-

cantly because of this topology modication, while some (e.g.

mean admission delays) retain the same characteristics. These

graphs are not presented in this paper. The mean rejection

delay graph (see Figure 2f) supports the hypothesis that the

mean rejection delay of the per–domain ping–pong method

(black) is generally not lower than that of the per–domain

backward method (red). In this case, for mean inter–arrival

times above 2, the former has a signicantly higher mean

rejection delay.

3) Test Conguration No. 3: the unmodied square mesh:

Most of the measurements on the square mesh network yielded

signicantly different results from those obtained on the linear

networks. The blocking characteristics (Figure 2g) show that

the at path computation method (gray) is more efcient

than any of the per–domain methods (this difference was not

observable on the linear networks). The distributed methods

(red, orange and black) are still quite closely grouped together

on the graph. We are omitting the graphs of the mean path

costs and lengths, as well as the mean admission and rejection

delays.

4) Test Conguration No. 4: square mesh with full mesh

domains: Increasing the connectivity of the routers in each

domain seems to impact the performance of the per–domain

backward method and the per–domain ping–pong method

relative to each other (compare Figure 2g to 2h). This time,

the distance fairness problems of the per–domain ping–pong

method seem to have diminished; in fact, it even shows better

blocking performance than the per–domain backward method.

The mean path costs and lengths of the two are very close to

each other as well as the mean admission delays (omitted). The

mean rejection delay of the per–domain backward method is

somewhat below that of the per–domain ping–pong algorithm.

5) Test Conguration No. 5: the horizontally stretched

linear network: Stretching the linear test network horizontally

emphasizes the difference between the per–domain tree–based



1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

mean inter-arrival time (ms)

b
lo

c
k
in

g
 p

ro
b
a
b
ili

ty

(a) Blocking probability, cong. 1

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

mean inter-arrival time (ms)

m
e
a
n
 u

ti
liz

a
ti
o
n

(b) Utilization, cong. 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

mean path cost (km)

b
lo

c
k
in

g
 p

ro
b
a
b
ili

ty

(c) Distance fairness, cong. 1

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256
2.5

2.8

3.0

3.2

3.5

3.8

4.0

4.2

4.5

4.8

5.0

mean inter-arrival time (ms)

m
e
a
n
 p

a
th

 c
o
s
t 
(m

s
)

(d) Mean path cost, cong. 1

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256
4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

mean inter-arrival time (ms)

m
e
a
n
 r

e
je

c
ti
o
n
 d

e
la

y
 (

m
s
)

(e) Mean rejection delay, cong. 1

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256
14.0

17.0

20.0

23.0

26.0

29.0

32.0

35.0

38.0

41.0

44.0

mean inter-arrival time (ms)

m
e
a
n
 r

e
je

c
ti
o
n
 d

e
la

y
 (

m
s
)

(f) Mean rejection delay, cong. 2

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

mean inter-arrival time (ms)

b
lo

c
k
in

g
 p

ro
b
a
b
ili

ty

(g) Blocking probability, cong. 3

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

mean inter-arrival time (ms)

b
lo

c
k
in

g
 p

ro
b
a
b
ili

ty

(h) Blocking probability, cong. 4

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

mean inter-arrival time (ms)

b
lo

c
k
in

g
 p

ro
b
a
b
ili

ty

(i) Blocking probability, cong. 5

Fig. 2: Simulation results

method (orange) and the other two distributed algorithms (red

and black; see Figure 2i). The distance fairness characteristics

of the per–domain backward and ping–pong methods have

not changed. Though the performance differences between the

distributed and the simulated algorithms are still quite high,

the per–domain tree–based method (orange) seems to narrow

this gap.



IV. CONCLUSION

In this paper, we have presented a performance analysis of

three distributed path computation algorithms designed for the

PCE architecture on various test networks. Our results indicate

that the per–domain tree method (which is similar to the BRPC

algorithm [17]) is a promising candidate. Its only shortcoming

appears to be the somewhat higher connection rejection delay.

We have also found that the performance differences between

the algorithms greatly depend on the network topology; e.g. for

a linear network, per–domain methods are nearly as good as

optimal algorithms. This fact may suggest that instead of trying

to use optimal algorithms for routing, we should optimize the

topology using off–line optimization.

REFERENCES

[1] S. Amante et al., Inter–provider Quality of Service, white paper draft,
version 1.1, Quality of Service Working Group, MIT Communications
Futures Program, November 2006

[2] J. Ash, J.–L. Le Roux, Path Computation Element (PCE) Communica-

tion Protocol Generic Requirements, RFC 4657, The Internet Society,
September 2006

[3] F. Aslam, Z. A. Uzmi, A. Farrel, Interdomain Path Computation:

Challenges and Solutions for Label Switched Networks, IEEE Commu-
nications Magazine, vol. 45, no. 10, pp. 94–101, October 2007

[4] T. Beyene, Y. Xin, M. Turabi, K. Raza, PCE Based Grid Networking,
IEEE Symposium on Computers and Communications (ISCC), Aveiro,
Portugal, 1–4 July 2007

[5] M. Boucadair, P. Lévis, D. Grifn, N. Wang, M. Howarth, G. Pavlou,
E. Mykonati, P. Georgatsos, B. Quoitin, J. Rodrı́guez Sánchez,
M. L. Garcı́a–Osma, A Framework for End–to–End Service Differen-

tiation: Network Planes and Parallel Internets, IEEE Communications
Magazine, vol. 45, no. 9, pp. 134–143, September 2007

[6] R. Bradford, J.–P. Vasseur, A. Farrel, Preserving Topology Condential-

ity in Inter-Domain Path Computation Using a Key-Based Mechanism,
Internet–Draft, draft-ietf-pce-path-key-03.txt, The IETF Trust, May 2008

[7] A. Farrel, J.–P. Vasseur, J. Ash, A Path Computation Element (PCE)–

Based Architecture, RFC 4655, The Internet Society, August 2006

[8] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, J. van der Merwe,
The Case for Separating Routing from Routers, ACM SIGCOMM
Workshop on Future Directions in Network Architecture, Portland, OR,
August 2004

[9] G. Geleji, PCE–Based Multi–Domain QoS Routing Simulator

(developer’s documentation), on–line resource available from
http://andromeda.csc. ncsu.edu/pcesim/, accessed
18 March 2008

[10] D. Grifn, J. Spencer, J. Griem, M. Boucadair, P. Morand, M. Howarth,
N. Wang, G. Pavlou, A. Asgari, P. Georgatsos, Interdomain Routing

through QoS–Class Planes, IEEE Communications Magazine, vol. 45,
no. 2, pp. 88–95, February 2007

[11] P. Levis, M. Boucadair, P. Morand, J. Spencer, D. Grifn, G. Pavlou,
P. Trimintzios, A New Perspective for a Global QoS–based Internet,
Journal on Communications Software and Systems, vol. 1, no. 1, pp.
13–23, September 2005

[12] A. J. McAuley, K. Manousakis, L. Kant, Flexible QoS Route Selection

with Diverse Objectives and Constraints, 16th International Workshop
on Quality of Service (IWQoS), Enschede, The Netherlands, 2–4 June
2008

[13] J. Rexford, A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
G. Xie, J. Zhan, H. Zhang, Network–Wide Decision Making: Toward

a Wafer–Thin Control Plane, HotNets–III, San Diego, CA, November
2004

[14] F. Ricciato, U. Monaco, D. Ali, Distributed Schemes for Diverse Path

Compu-tation in Multidomain MPLS Networks, IEEE Communications
Magazine, vol. 43, no. 6, pp. 138–146, June 2005

[15] S. Shenker, Fundamental Design Issues for the Future Internet, IEEE
Journal on Selected Areas in Communications, vol. 13, no. 7, pp. 1176–
1188, September 1995

[16] J.–P. Vasseur, J.–L. Le Roux, Path Computation Element (PCE) Commu-

nication Protocol (PCEP), Internet–Draft, draft–ietf–pce–pcep–09.txt,
The IETF Trust, November 2007

[17] J.–P. Vasseur, R. Zhang, N. Bitar, J.–L. Le Roux, A Backward Recur-

sive PCE-based Computation (BRPC) Procedure To Compute Shortest

Constrained Inter-domain Trafc Engineering Label Switched Paths,
Internet–Draft, draft-ietf-pce-brpc-09.txt, The IETF Trust, April 2008

[18] M. Yannuzzi, X. Masip–Bruin, S. Sánchez, J. Domingo–Pascual,
A. Orda, A. Sprintson, On the Challenges of Establishing Disjoint

QoS IP/MPLS Paths Across Multiple Domains, IEEE Communications
Magazine, vol. 44, no. 12, pp. 60–66, December 2006


