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Abstract—Affect provides contextual information about the emotional state of a person as he/she communicates in both verbal and/or

non-verbal forms. While human’s are great at determining the emotional state of people while they communicate in person, it is

challenging and still largely an unsolved problem to computationally determine the emotional state of a person. Emotional states of a

person manifest in the physiological biosignals such as electrocardiogram (ECG) and electrodermal activity (EDA) because these

signals are impacted by the peripheral nervous system of the body, and the peripheral nervous system is strongly coupled with the

mental state of the person. In this paper, we present a method to accurately recognize six emotions using ECG and EDA signals and

applying auto regressive hidden markov models and heart rate variability analysis on these signals. The six emotions include

happiness, sadness, surprise, fear, anger and disgust. We evaluated our method on a comprehensive new data set collected from 30

participants. Our results show that our proposed method achieves an average accuracy of 94.6% in distinguishing across the 6

emotions.

Index Terms—Affect Recognition, Auto regressive hidden markov models, Machine learning, Linear discriminant analysis, Heart rate

variability.

F

1 INTRODUCTION

AFFECT plays an important role in human life as it
provides contextual information about the emotional

state of a person as he/she communicates in both verbal
and/or non-verbal forms. A person’s mood greatly inu-
ences the way he/she communicates and behaves. It guides
the decision-making processes in response to social cues
and improves one’s capacity to develop and nouriush social
connections. While human’s have evolved to determine
the emotional state of people while they communicate in
person, it is challenging and still largely an unsolved prob-
lem to computationally determine the emotional state of
a person using appropriate sensors. Automatic and com-
putational determination of emotional state of a person
nds many applications such as more natural interaction
with computing devices, treatment of conditions such as
schizophrenia, autism, and psychopathy, and many more.

Physiological biosignals such as electrocardiogram
(ECG), electrodermal activity (EDA), and electroencephalo-
gram (EEG) are impactred by the emotional state of a
person because these signals are impacted by the peripheral
nervous system of the body, and the peripheral nervous
system is strongly coupled with the mental state of the
person [1], [2]. The peripheral nervous system is composed
of nerves that convey information from receptors to the
brain. Autonomic nervous system (ANS) which is a sub
part of this system controls involuntary movements in
organism, especially in the functioning of internal organs
[3]. It is composed of two parts: a sympathetic system and
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a parasympathetic system. Each organ in human body is
connected to nerves belonging to both these systems. When
a person’s emotional state changes, the sympathetic and/or
parasympethetic systems activate, which lead to changes in
the operational state of various internal organs, and these
states can be measured using the biosignals we mentioned
earlier. For example, when a person feals fear, his/her
sympethtic system activates and the nerves of this syetm
release epinephrine in the body, which leads to increase in
heart rate, and this increase in heart rate can be measured
in the ECG signals. Although the events that trigger human
emotions often vary, the physiological signals and responses
produced by the body are the same for everyone. This way,
we can use the variations in such biosignals to identify the
affective/emotional state of the person.

It is widely accepted in the literature that emotions can
be classied into six main categories: happiness, sadness,
surprise, fear, anger and disgust [4]. Different theoreticians
have proposed diverse categorizations of emotions, shown
in Table 1. Among these six emotions, happiness is the most
important representative of positive feelings, and it emerges
in situations where individuals are most comfortable and
life experiences are most intense. It has been observed
that individuals take actions to maximize the possibility
of feeling positive emotions and minimize feeling negative
emotions. For example, people strive to avoid situations that
can lead to sadness or anxiety and search for social activities
and/or hobbies that give a sense of happiness, pleasure,
and excitement. Negative feelings such as, anger, fear, dis-
gust and sadness give rise to the stress of various levels
depending on the individual. The denition of stress varies
depending on the discipline (psychology, biomedicine, or
sociology), but in general it is dened as a collection of
emotional, mental, physical, and behavioral responses when
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an individual feels anxious.
Many studies have shown that heart rate variability

(HRV) extracted from ECG is a signicant metric in de-
termining physiological and psychosocial conditions, such
as depression, anxiety, stress, and panic [6], [7], [8].. It has
been shown that HRV changes occur according to psy-
chosocial factors. Hon and Lee reported the manifestation
of emotional factors in the form of changes in HRV in [9].
Ewing et al. [10] used RR intervals to detect autonomic
neuropathy in diabetic patients. Wolf [11], Kannel et al. [12],
and Antoni et al. [13] studied the relationship between low
HRV and high mortality [14]. These studies showed that
there is a link between negative emotions and low HRV.
In anxious and depressed people, HRV has been shown to
be low [15]. The reason is that both the sympathetic and
parasympathetic branches of the autonomic nervous system
take part in regulating the heart rate (HR). Sympathetic
nervous system activity increases HR and decreases HRV,
whereas parasympathetic nervous system activity decreases
HR and increases HRV [16].

Our survey of the research performed on the topic of
affect recognition revealed many different methods includ-
ing Hidden Markov Models (HMMs) [17], support vector
machines (SVM) [18] [19] [20] [21] [22], k nearest neighbor
algorithm (k-NN) [23] [24], and Fishers linear discriminant
analysis (FLDA) [25]. Unfortunately, prior schemes suffer
from the problems of low accuracy and limited dataset. In
fact, most studies used the same datasets to evaluate their
methods, which were collected in isolated and noise-free
hospital and laboratory environments. The only study that
is close to ours was proposed by Garcia et al. [26] that
used Fisher kernels and autoregressive (AR) HMMs with
DEAP (Dataset for Emotion Analysis using Physiological
signals) [27]. DEAP contains EEG (electroencephalogram),
EMG (electromyography), EOG (electrooculography) , GSR
(galvanic skin response), respiration, plethysmograph and
temperature data from 32 participants. Unfortunately, their
method provided accuracies of only 70%, 63% and 64% on
Positive-Negative emotions, Pleasant-Unpleasant Valence,
and Active-Passive Arousal, respectively. As we can see,
in addition to relatively low accuracy, this work did not
actually distinguish between the six emotions that we men-
tioned earlier.

In this paper, we present a new method that applies AR-
HMMs on biosignals and very accurately recognizes the
six affects mentioned earlier. The biosignals that we use
include the EDA signal and HRV extracted from the ECG
signal. We evaluate our method on a new data set collected
from 30 people. Our results show that our proposed method
achieves an average accuracy of 94.6% in distinguishing
across the 6 emotions. AR-HMM based techniques are pop-
ular and they have been applied in many domains including
the medical eld. For example, [28] used AR-HMM on
speech signals to detect words and syllable boundaries
Stanculescu et. al. [29] modelled the presence of blood-borne
infections with an AR-HMM model with the objective of
reducing the waiting period for sepsis analysis of premature
babies. Other studies include estimating missing data for
modeling functional MRI imaging data [30] and nding
differentially expressed genes in tumors [31].

To summarize, in this paper, we make the following

three contributions.

• We have developed a user-independent affect recog-
nition method that uses AR-HMM for electrodermal
activity (EDA) features and HRV analysis for ECG
features with a machine learning classier.

• We show that using ECG feature in addition to EDA
for affect recognition increases the accuracy signi-
cantly.

• We show that instead of analyzing emotions directly,
rst performing mood analysis and then performing
emotion analysis increases affect recognition accu-
racy signicantly.

The rest of the paper is organized as follows. In the next
section, we discuss the related work on affect recognition.
In Section III, we describe our proposed affect recognition
method in detail. In Section IV, we extensively evaluate our
proposed method on a real data set and present the results.
Finally, in Section V, we conclude the paper.

2 RELATED WORK

Several prior studies exist on human emotion analysis and
recognition from physiological and non physiological sig-
nals. For example, [17] targeted the recognition of four emo-
tions (happiness, anger, sadness, and neutral state) using
facial expressions and speech. To recognize emotions, the
proposed method uses markers on the face in a video in con-
junction with acoustic information extracted from speech
recorded simultaneously with the video. The results showed
that the two modalities used together gave higher accuracy.
Wang and Guan also conducted a study on recognition of
individuals emotional states from audiovisual signals [25].
They represented visual characteristics with Gabor wavelet
features and the audio information was constituted with the
extracted prosodic, formant frequency, and Mel-frequency
Cepstral Coefcient (MFCC) features. The multinomial clas-
sier of the proposed model achieved 82.14% accuracy on a
dataset consisting of 400 videos of 6 different emotions.

In [18], a headband is developed to collect EEG signals,
which are then utilized for emotion analysis. Five male
subjects were assessed for pleasant, neutral, and unpleas-
ant emotional states. This method achieved an accuracy
of 66.7% using support vector machines. Soleymani et. al.
[19] described a system to recognize arousal/valance states
of individuals using features extracted from EEG data and
pupillary reexes. The 24 participants’ EEG responses and
eye-gaze data were recorded during the emotional videos
watched by them. At the end of the follow-up, a survey
and evaluation were requested. This study showed that
gaze distance and pupillary responses provide important
affective feedbacks and the proposed approach achieved
68.5% and 76.4% accuracy for classifying three labels of
valence and arousal, respectively. In another study [26]
investigating valence/arousal levels, emotional regression
was computed using machine learning methods. Physiolog-
ical signals (EEG, EMG, EOG, GSR, respiration rate, plethys-
mograph, and temperature) were mapped to a Fisher score-
space-based ve state Hiden Markov Model to train for
every subject and discriminative regression was performed
via support vector machines. The performance of proposed
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TABLE 1
Emotion clusters created by different theorists [5].

Theorists Year Emotion Clusters Basis for Inclusion
James 1884 Rage, Fear, Grief, Love Bodily involvement
Ekman et. al. 1982 Anger, Fear, Sadness, Joy, Disgust, Surprise Universal facial expression
Clynes 1977 Joy, Grief, Anger, Hate, Reverence, Love, Sex, Depicted Emotional expressive behavior
Panskepp 1982 Rage, Fear, Panic, Expectancy Hardwired
Plutchik 1980 Anger, Fear, Acceptance, Anticipation, Disgust, Joy, Surprise, Sadness Relation to adaptive biological process
Izard 1971 Anger, Fear, Contempt, Disgust, Distress, Guilt, Interest, Joy, Shame, Suprise Hardwired
Frijda 1986 Communication, Desire, Happiness, Interest, Wonder, Sorrow, Surprise Forms of action readiness

multimodal techniques resulted between 65.39% and 71.08%
accuracy.

The system proposed by Verma and Tiwary [20] esti-
mates the valence, arousal, and dominance values of several
emotions using EEG, GSR, EMG, and EOG data in the DEAP
database. Following the implementation of Discrete Wavelet
Transform for signal analysis, tests were performed for 4
different classiers. The average accuracies turned out to be
81.45%, 74.37%, 57.74%, and 75.94% for support vector ma-
chine, multilayer perceptron, k-nearest neighbor, and meta-
multiclass classiers, respectively. In another study [23] that
also used the DEAP database, the Frequency Cepstral Coef-
cient (FCC) method was applied to determine the features.
This technique used the Kernel Density Estimation (KDE)
along with the K-Nearest Neighbor classier to classify
Happy and Sad emotions. The FCC method achieved 90%
accuracy, which was 10% higher compared to the accuracy
achieved by KDE. Yin et. al. [32] applied deep learning to
DEAP database. Their proposed method, multiple-fusion-
layer based ensemble classier of stacked autoencoder, rec-
ognizes arousal/valence plane characteristics with average
accuracy of 83.61% . Atkinson and Campos [33] applied
minimum-Redundancy-Maximum Relevance (mRMR) tech-
nique to DEAP database to increase the impact of fea-
ture selection as a signal preprocessing step. Genetic Al-
gorithm metaheuristic reinforced support vector machines
kernel classier achieved 60.7% and 62.33% accuracies for
classifying arousal and valence, respectively. Chen et. al.
[34] proposed to use ontological models for representing
EEG records of DEAP database. Proposed model achieved
a 69.09% accuracy for arousal and 67.89% accuracy for
valence. C4.5 binary classier reached the highest perfor-
mance in emotion recognition among other techniques such
as SVM, Multilayer Perception, and k-Nearest Neighbor.
Cheng et. al. [21] used feature fusion method on one-channel
ECG data to detect negative emotions, and achieved an
overall accuracy of 79.51%.

Zhong et. al. [22] proposed a framework for multi-modal
emotion recognition using physiological and facial expres-
sion data streams, called Temporal Information Preserv-
ing Framework (TIPF). GSR, ECG, respiratory amplitude,
and skin temperature are used to distinguish valence and
arousal distribution of streams. The primary observation in
this study is that the use of temporal information of phys-
iological signals increases the accuracy of the recognition
of affect. Chen et. al. [34] proposed a three-stage decision
method to recognize four emotions based on physiological
signals. The rst stage removes the inuence of individual
differences by transforming mixed training into separate
groups. In the second stage, four emotions are divided

into two emotion pools to reduce recognition complexity.
In the third and last stage, a classier is trained based
on affect in each emotion pool. This three-staged decision
approach gave the highest accuracy of 77.57% usingk-NN,
SVM, C4.5, Random forest, One-against-Rest, and One-
against-One classication schemes. To make the comparison
between prior work easy, we have summarized the prior
work in Table 2.

In comparison with all prior work, the method that we
propose in this paper uses EDA as the information source
in addition to ECG and achieves a high accuracy of 94.6%,
which is greate than the accuracies achieved by any prior
scheme. Furethrmore, we have not used the DEAP database
because it suitable for working only on the valence-arousal
plane and does not contain data that one can use to evaluate
the accuracy of one’s scheme on detecting emotions. We
generated our own database that contains datat which can
be used to evaluate emotion recognition schemes.

3 METHODOLOGY

This section we provide a detailed description of our
method to accurately identify emotions. Our method con-
sists of four stages. In the rst stage, we preproceess the data
where we remove the noise from the signals. In the second
stage, we extract appropriate features that can be used to
distinguish between different emotions. In the third stage,
we apply linear discriminant analysis to reduce the number
of features. Finally, in the last stage, we generate neural
networks based classication models. Next, we describe
these four stages in detail, but before that, we rst describe
how we collected physiological data from volunteers for the
six emotions, namely calmness, fear, sadness, anger, disgust,
and happiness.

3.1 Data Collection

We collected physiological signal data from 30 participants
comprising 11 males and 19 females between the ages of
19 to 81 years. Before starting data collection session with
any participant, we rst asked the participant to sit down
and relax for 10 minutes. After that, the participant put on
headphones and watched six 1-minute videos in random
order corressponding to the six emotions in our study.
While transition from video for one emotion to the video
of another, we kept a pause of 5 seconds for a quick rest.
While the participant watched the videos, we recorded par-
ticiapnt’s psychophysiological response (more specically,
ECG and EDA signals) at a sampling rate of 290Hz using
the Cardiovascular Disease Monitoring (CVDiMo) wearable
system. Most participants sat through two sessions, and
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TABLE 2
PERFORMANCE COMPARISION WITH EXISTING WORK ON AFFECT RECOGNITION

Study Methods Source Dataset Participant Recognition
Accuracy
Rate(%)

Busso et al.
(2004) [17]

HMM, MFCC,
Bimodal Classier

Speech,
Facial Expression

N/A N/A

Anger,
Sadness,

Happiness,
Neutral

89

Wang and Guan
(2008) [25]

MFCC, Gabor Wavelet,
PCA, Multiclassier

Audiovisual Signals N/A N/A

Anger, Disgust,
Fear,

Happiness,
Sadness, Surprise

82.14

Schaaff and Schultz
(2009) [18]

Fourier Transform,
SVM

EEG N/A 5
Valence,
Arousal

66.70

Soleymani et al.
(2012) [19]

Modality fusion
strategy, SVM

EEG,
Pupillary Response,

Gaze distance
N/A 24

Valence,
Arousal

68.50 -
76.4

Garcia et al.
(2013) [26]

AR, HMM,
Fisher kernels

EEG, EMG,
EOG ,GSR,

respiration, PPG,
temperature

DEAP 32

Positive-Negative,
Pleasant-Unpleasant

Valence ,
Active-Passive

Arousal

70 -
63 -
64

Verma and Tiwary
(2014) [20]

Discrete Wavelet
Transform, SVM

EEG, GSR,
EMG, EOG,

DEAP 32
Valence,
Arousal,

Dominance
81.45

Cheng et al.
(2017) [21]

HRV, SVM ECG
Bio Vid Emo
DB dataset

N/A
Negative
Emotions

79.51

Lahane and
Thirugnanam
(2017) [23]

Kernel Density
Estimation (KDE),

k-NN
EEG DEAP 32 Happy, Sad 90

Zhong et al.
(2017) [22]

HRV, SCR detection,
SVM

Facial expression,
GSR, ECG,
Respiration,
Temperature

MAHNOB-HCI
database

27
Arousal,
Valance

70 - 73

Chen et al.
(2017) [24]

FFT, k-NN,
Random Forest

EEG, EOG,
EMG,

Temperature,
BVP, Respiration,

GSR

DEAP 32
Arousal,
Valance

77.57 -
43.57

Yin et al.
(2016) [32]

Deep Learning

EEG, EOG,
EMG,

Temperature,
BVP, Respiration,

GSR

DEAP 32
Arousal,
Valance

84.18 -
83,04

Atkinson and Campos
(2016) [33]

Genetic Algorithm
supported

SVM

EEG, EOG,
EMG,

Temperature,
BVP, Respiration,

GSR

DEAP 32
Arousal,
Valance

60,7 -
62,33

Chen et al.
(2015) [34]

C4.5 classier EEG DEAP 32
Arousal,
Valance

69.09 -
67.89

Our Model (2018)
HRV, AR-HMM,

LDA, NN
ECG, EDA

CVDiMo
(own)

30

Calm, Fear,
Sadness,

Disgust, Anger,
Happiness

94.6

DEAP: Dataset for Emotion Analysis using Physiological signals

thus watched each of the twelve videos (we prepared two
unique videos per emotion). Some of the participants only
participated in the rst session. On the completion of the
data collection, we had a total of 312 records. The data
collection was approved by the Istanbul CerrahpasaMedical
Faculty Hospital’s (in Istanbul, Turkey) ethical committee on
the use of humans as experimental subjects.

In the video intended to induce the calmness emotion,
we showed the participants nature images and underwater
shots. The effect was enhanced by the use of background
music. In the video intended to induce the fear emotion, we
showed the participants horror scenes from the the horror
lms Ring and The Grudge. In the video intended to induce
the sadness emotion, we showed the participants emotional

parts of thefamous Turkish drama lms Ekya and Babam ve
Olum. In the video intended to induce the anger emotion,
we showed the participants a baby being beaten by his
caregiver and people being beaten unfairly by the police.
In the video intended to induce the disgust emotion, we
showed the participants scenes of eating insects and dead
animals by the actor Bear Grylls from the documentary
Man vs. Wild. Finally, in the video intended to induce the
happiness emotion, we showed the participants cute animal
images.

3.2 Preprocessing

The signals obtained from the sensors may be distorted due
to the movement of the body and other issues that occur



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 00, NO. 0, AUGUST 201- 5

during the data collection. To eliminate such artifacts, a
preprocessing step is needed.

The ECG signals were processed using the following
three steps: noise reduction, RR interval detection, and
interbeat interval outlier removal. In the noise reduction
step, low-pass lters, median lters and discrete wavelet
transforms (DWT) were applied. These reduce the high-
frequency components so that we can obtain the low-
frequency features, trends, and a constant value of the of
the raw ECG in each window.

We applied a derivative operator on the RR intervals to
suppress the emergence of the QRS complex, which reects
rapid changes in the signal. This allowed us to capture
the slowly varying low frequency T, P, and U waves in
the cardiac cycle. Next, the negative parts coming from
the derivation process were eliminated and the signal was
squared to increase nonlinearly the dominant peaks. In
other words, the smaller values were further reduced and
the larger values were increased to emphasize the R peak
slope. Finally, we performed motion window integration
to obtain wave form features in addition to the slope of
the R peaks. A vital component in determining the cardiac
cycle from the noise-reduced ECG signal is to nd the RR
intervals. This is often done by determining the location of
each pulse using techniques, such as, linear ltering and
nonlinear transformations, and rule-based approaches. The
R peaks, which were determined as characteristic points,
were determined physiologically on the basis of a rule that
a new wave could not occur with 200ms of the most recent
wave. The highest peak in that cycle was determined as
R, after one cycle was captured. The peak point of each
participant is automatically adapted using the adaptive
threshold value determined according to each signal.

EDA signals are one of the most robust physiological sig-
nals in affect recognition because of the fact that responses
are sympathetic-centered. However, the signals also contain
a large number of artifacts like ECG, such as electrical line
noise. The spectral distributions of these signals are in the
range of 0.08 − 0.2Hz. For this reason, in the rst step, we
used a third-order low-pass lter with a cut-off frequency
of 0.3Hz to reduce noise and then applied normalization
to calculate the change in the fundamental uctuations
typically found in skin conductivity measurements. Nor-
malization also limits the variance due to differences in
physiology between participants, in addition to the long
term changes in the physiological signal over time such as
ambient temperature, time of the day etc.

3.3 Feature Extraction

All signals have been calculated over equal length time in-
tervals in order to avoid bias in duration-dependent metrics
(such as the standard deviation). To this end, the rst minute
(which is the total duration of watching activity) of the
measurements was used to derive the value of the features.

The EDA signal is comprised of two components, skin
conductivity responses (SCR) and skin conductance level
(SCL). SCL is the slower basal component of EDA. There-
fore, we only used SCR values from the EDA signal and
modeled the entire SCR signal using an AR-HMM and used
the model parameters as features. From the EDA signal, we

obtained a total of 19 features. From the ECG signal, we
performed HRV analysis and obtained a total of 17 features.
Next, we rst descirbe how we modeled the EDA signal
using AR-HMM and after that explain the HRV analysis on
the ECG signal. Table 3 summarizes the features that we
have used.

3.3.1 AR-HMM Modeling of Emotions using EDA Signals

An HMM is a discrete-time Markov Chain, whose states
are hidden. At each state, an observable output is produced
according to a state-dependent distribution. In an auto-
regressive HMM (AR-HMM) the observable outputs are
generated by an autoregressive model whose coefcients
depend on the current state of the HMM. HMMs have been
extensively used for the purpose of classication using three
different approaches: a) given a sequence of observations
and a number of different HMMs, determine the most likely
HMM from which it came from; b) given a sequence of
observations that came from a given HMM, determine the
most likely sequence of states which gave rise to these obser-
vations; and c) given a sequence of observations, determine
the most likely parameters of the HMM that gave rise to the
sequence. In this paper, we will use the third approach to
classify emotions.

Let us consider an AR-HMM with N states, a one-
step transition matrix A = [aij ], and an intial probability
vector B = [bi]. Let Y = y1, y2, ..., yT be a sequence of
affect observations. In the AR-HMMmodel the observations
follow an AR(p) model, whose parameters depend on the
current state of the Markov Chain, i.e.,

Yt = ci,0 + ci,1 + ..+ ci,pYt−p + εt (1)

where i = 1, 2, . . . , N indicates the state of the Markov
Chain and εt ∼ N(0,


).

We set the number of states of the Markov Chain to three
in order to reect the intensity of emotion experienced by
the participant at three different levels, i.e., low, medium,
and high. Using the partial autocorrelation function (PACF)
of the time series, we xed the order of the AR model to
three. Thus, our model is an AR(3)-HMM(3). 1.

Figure 1 consist of three graphs. The rst one gives
the ltered EDA signal to be modelled. The second one
depicts the conditional standard deviation of the model,
and the third graph shows the smoothed states probabilities
of the model. We note that in the rst few seconds of the
experiment, state 1 is oating around zero, and states 2 and
3 around 0.4 - 0.6. After that, some states increase to 0.9
- 1 and others decrease. Based on these observations we
conclude that every emotion carries multiple stimulations
within itself. For the most of the part of the smoothed state
probabilities generated by the Markov algorithm clearly
distinguishes the most probable state.

The hidden Markov chain parameters can be estimated
using the Expectations Maximization (EM)[35] algorithm. In
the maximization step, we re-estimate the parameters asso-
ciated with each regime, the transition probability matrix
and the smooth probabilities. During the estimation, the
predictor coefcient C was calculated with respect to EDA
segments. Initial model of the unknown state, each set of
sequences is segmented into the maximum likelihood state
sequence. That denotes if an observation is cataloged into
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Fig. 1. Plot of the observed time series of EDA with conditional standard deviation and smoothed state probabilities modeled of the AR(3). (Subject
01, Emotion 02:Fear)

the ith state, we presume the corresponding state Xt be the
ith state. We delegate each observation to the related state
by corresponding its norm to a threshold.

This paragraph is also very unclear. I can’t understand anything

written here. Please elaborate it in more detrail.To perform the grad-
ual estimation, the Euclidean distance calculate between the
AR coefcients of varied segment. The observation matrix
C = I, C2, C3, ..., Cn+1 where I is an identity vector and
the column vectors C2, C3, ..., Cn+1 consist of coefcients
c(2), c(3), ..., c(n + 1) respectively of the skin response seg-
ments for estimation. The predicator C was computed at
each stage of estimation based on the chosen sets. The
procedure is iterated after replacing the old model with the
new model. The steps assure an increase in likelihood after
each iteration and will converge to a local optimum. The
procedure for estimating the AR HMM model parameters,
outlined in Algorithm 1.

Algorithm 1 Algorithm for Estimation of AR Model

Input: X∗ ← X∗

1 , X
∗

2 , ..., X
∗

T , {initial state}
Lag ← Lag1:3 , State ← State1:3

Output: AR Model
Initialization : π ← A,λ ← π, A,B

1: for i → State do
2: for j → Lag do

3: aij ←
#of transitions from state i to j

#of transitions from state i

4: µi
j ←


Xt=i

Y
Xt
t,j

Statei
{mean vector in state i}

5: Ci
j ←


Xt=i

(Yt,j−µ
Xt
j

)(Yt−1,j−µ
Xt−1

j
)

xt=i
(Yt,j−µ

Xt
j

)2

{jth element AR argument in state i}

6:


←


T

t=1
εt

T
{Covariance matrix of noise}

7: EstimateModel : λ̂ ← π̂, Â, B̂
8: CalcSmoothedProb : P (Xt|Y ), P (Xt, Xt − 1|Y )
9: FindStateSeq : X∗

10: aij =


T

t=2
P (Xt=j ,Xt−1=i|Y )

T

t=2
P (Xt−1=i|Y )

{Re-estimate}

11: end for
12: end for
13: return ARModel

After developing the AR-HMM model, we used the
following values as features to classify the emotions: log-
likelihood, standardized residuals, switching coefcients for
the 3 lags (recall that we we used AR(3)), Akaike infor-
mation criterion, Bayesian information criterion, transition
probability, number of estimated parameters, estimated pa-
rameters in vector, standard errors of coefcients, smoothed
probabilities of regimes, and covariance matrix.

3.3.2 Heart Rate Variability Analysis

Heart Rate Variability (HRV) is a physiological sign of
cardiac autonomic activity and refers to the time series
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magnitude of the standard deviation of cardiac periods in
the pulse cycle [16]. HRV refers to the change in heart rate
intervals which is also known as RR intervals. It has been
used in many studies involving cardiovascular research and
human health as an indirect tool to assess the functioning
and balance of the autonomic nervous system [14]. HRV
is also often used in emotion recognition research and
shows different values when a person experiences different
emotions.

The time between sequential heartbeats (RR
interval) is the sum of the two sequences
(QRSk = RRi, RRi+1, ..., RRn and QRSk−1 =
RRi+1, RRi+2, ..., RRn+1) [14]. We calculated the average
RR interval and standard deviations of one minute
segments, the shortest, longest, and average RR interval,
the segment number (pNN50) in which the successive
difference of two RR intervals is more than 50 ms, the
square root mean square difference of consecutive RR
intervals, the HRV triangle index (HRVI) measurement,
and the integrals of the RR interval frequency density
distribution, and used all these values as features. To
calculate the HRVI, the total range of all RR intervals
was divided by the height of the density histogram of
RR intervals measured on a separate scale with bins of
7.8125 ms (1/128 seconds). In addition to time frequency
analysis, we performed a frequency spectrum analysis
of the HRV with the power spectrum obtained by fast
Fourier Transform. The ratios (LF/HF) of low (LF) and high
frequency (HF) bands were obtained. We used the Poincar
plot (SD1, SD2) from the analysis methods to evaluate the
dynamics of HRV because it contains non-linear features
of HRV. SD1 is an index that represents HRV in long-term
recordings and reects global variability, and SD2 is an
index that shows the variability of pulse rate instantly and
shows parasympathetic activity. The ratio (SD1/SD2) shows
the ratio between the short and long variations of the RR
intervals.

3.4 Feature Selection with Linear Discriminant Analy-

sis

We as can see from the Table 3, the number of features that
we extract per video record (recall that we have 312 records
in total), is 36. For 36 features, to achieve good accuracy,
we should have atleast 10 times as many records as the
number of features times number of classes. Otherwise, due
to the curse of dimensionality, the accuracy deteriorates.
Unfortuntaely, obtain such a large number of records is
prohibitive.

To overcome this problem, we employed linear discrim-
inant analysis to reduces the high dimensionality due to
the large number of features by merging features while
preserving as much of the class discriminatory information
as possible. The decrease in the number of features and
thus the dimensionality further increases computational
efciency and reduces possibility of overtting.

Next, we describe how LDA reduces the dimensionality.
Given n features x1, x2, ..., xn that we want to reduce to m
features, where m < n, as a rst step we calculate an m-
dimensional mean vector for each class in the dataset,

µi =
1

Ni

∑
x (2)

TABLE 3
List of Features

Source Number Feature

EDA

1 Log-likelihood
2 Standardized Residuals from the model
3 P value
4 Akaike information criterion
5 Bayesian information criterion
6 Transition Probability for lag 1
7 Transition Probability for lag 2
8 Transition Probability for lag 3
9 Mean
10 Number of Observation
11 Switching Betas(Coefcients) for lag 1
12 Switching Betas(Coefcients) for lag 2
13 Switching Betas(Coefcients) for lag 3
14 Number of estimated parameters
15 Estimated parameters in vector
16 Standard errors of coefcients
17 Smoothed probabilities of regimes
18 Conditional Std
19 Covariance matrix

ECG

20 Mean Heart Rate
21 Minimum Heart Rate
22 Maximum Heart Rate
23 Global variability Index SD1
24 Instant variability Index SD2
25 SD Ratio
26 High frequency (HF) bands
27 Low frequency (LF) bands
28 HF/LF Ratio
29 Square root mean square difference (RMSSD)
30 Mean RR
31 Minimum RR
32 Maximum RR
33 Segment number successive difference >50 NN50
34 Percentage of NN50 (pNN50)
35 HRV triangle index (HRVI)
36 RR interval standard deviations

Next, we compute the scatter matrices within and between-
classes as follows:

Sw =

c∑

i=1

∑

xkci

(xk − µi)(xk − µi)
T (3)

Sb =

c∑

i=1

Ni(µi − µ)(µi − µ)T (4)

After this, we calculate the eigenvectors and eigenvalues
of the scatter matrices, and select n eigenvectors with the
highest eigenvalues to shape a m × n dimensional matrix
whose columns represent the eigenvectors.

S−1
w SBw = λw (5)

Next, we use the m × n eigenvector matrix to convert the
samples to the new subspace and get the new feature vectors
Y ,

Y = wTxk (6)

where k = 1, 2, ..., N and w is a matrix with orthonormal
columns. In our implementation, we used m = 17, i.e, we
projected the 36 dimensional feature space onto 17 dimen-
sional feature space, while maximizing distance between
classes in the m dimensional space.
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3.5 Neural Network Models

After reducing the number of dimension to seventeen (17),
we then used the values of these parameters from our 312
records to train neural network classiers and classify the
emotions. Before training the neural network, we scaled the
feature set to bring the values of all features in the range
[1, 1]. The motivation behind doing this was to prevent
features with larger values suppressing those with smaller
values. We calculated the accuracy achieved by the neural
networks using 10-fold cross-validation.

We observed from our experiments that when we tried
to recognize the six emotions together, the accuracy was not
as high as we desired. To overcome this problem, we divi-
died the classication problem into two levels of hierachy.
The rst level of clasication only determine whether an
emotion is positive or negative. Among our six emotions,
calmness and happiness constitute positive emotions while
fear, sadness, anger, and disgust constitute negative emo-
tions. After identifying which catergory does the emotion
belong two, we perform the second level of classication,
where we determine exactly which emotion is represented
by the unknown sample. Algorithm 2 described provides
the pseudo code of the training process.

Algorithm 2 Algorithm for Hierarchal Training

Input: Feature← f1, f2, ..., fn
Output: Model

Initialization : Epochs, Model, Kfold
Finding Long-Term State

1: for kl → Kfold do
2: for epocl → Epochs do
3: for input  Feature do
4: m ← trainmodel(input,Model)
5: end for
6: end for
7: end for
8: if (m 6= 0) then
9: Finding Positive State

10: trainrecursion(∼ )
mp ← trainmodel(input,m)

11: end if
12: if (m 6= 1) then
13: Finding Negative State
14: trainrecursion(∼ )

mn ← trainmodel(input,m)
15: end if

{Evaluate model accuracy}
16: return Model

4 EXPERIMENTAL RESULTS

In this section, we rst present an exploratory study on our
data set that helps us understand the separability across
different emotions using the features that we discussed in
the previous section. After that, we present the results on the
accuracy of our proposed scheme in identifying emotions.
The experiments on evaluating the accuracy of our proposed
method are conducted on three levels. At the rst level,
we simply classify whether an emotion was positive or
negative. Recall that happiness and calmness belong to the

positive class while the remaining four emotions belong to
the negative class. We call this positive or negative categori-
aton of emotions the long term affective state. At the second
level, nd out exactly which emotion is experienced by the
participant without using the results from the rst level of
classication. Finally, at the third level, we perform hierar-
chical classication, where we rst classify a given sample
into either positive or negative effective state and then
further identify the exact emotion within that affective state.
Figure 2 summarizes this hierarchical approach to emotion
classication. All the algorithms used were implemenetd in

Fig. 2. Hierrchical model of affect

MatLab and the experiments were conducted using a high-
performance computing (HPC) facility in North Carolina
State University and also on a personal computer equipped
with a 64-bit Intel (i7-7700 HQ) 2.8 GHz processor and 16
GB DDR4 RAM.

4.1 Exploratory Study

In this section, we try to understand the separability of the
emotions through unsupervised clustering. For clustering,
we use k-means algorithm. If we observe a good separation
across clusters obtained using this unsupervised method,
then our proposed method in the previous section should
be able to distinguish across the six emotions. Recall that
we have 312 records and each record has 36 features (before
applying the LDA). As we have 6 emotions, we used k = 6
when applying k means clustering.

To display the results of clustering, we choose silhouette
plots. A silhouette plot is a representation of a clusters that
highlights the tightness of the clusters as well as their sep-
aration. A silhouette plot obtained from k means clustering
contains k solhouettes. Fatlma, please elaborate the rest of
this paragraph in blue color more detail. It is very unclear
The average silhouette width, which is an important ratio,
maximizes the distance between the clusters and reduces
the distance within the head. This average silhouette can be
used to select an appropriate number of K sets, as well as
provide an assessment of cluster validity. Silhouette points
evaluation for cluster was realized as: ≤ 0.19 bad sepera-
tion, 0.20 − 0.49 poor seperation, 0.50 − 0.69, reasonable
seperation, and 0.70 − 1.00 excellent seperation. Silhouette
coefcients close to 1 indicate that the sample is far from
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neighboring clusters and the assignment is very accurate.
However, a value close to 0 means to be very close to
another cluster boundary. Sometimes these coefcients can
be produced negatively, meaning that they are assigned to
the wrong clusters.

Figure 3 shows a silhouette plot of the clusters obtained
from the 19 EDA features and a scatter plot . (Fatma, which
three features are plotted here) We observe from this gure
that most points in all the clusters have low silhouette values
(< 0.2) and some even have negative values. This shows
that the clusters are not well separated when using only
EDA based features. Similarly, the scatter plot does not show
any visible clusters either. This implies that using AR-HMM
features alone will not provide a high accuracy.

Fig. 3. Affect feature clusters a) silhouette plot of EDA features b) cluster
plot of EDA features

Figure 4 shows a silhouette plot of the clusters obtained
from both 19 EDA and 17 HRV features and a scatter plot.
(Fatma, which three features are plotted here) We observe
from this gure that most points in all the clusters have
higher values (between 0.3 and 0.6) compared to what we
saw in Figure 3, but are still not very high, indicating that
while some clusters exist, they are not very well separated.
The scatter plot in Figure 4 also visually shows the presence
of some clusters, but the clusters are not very well separated.

Fig. 4. Affect feature clusters a) silhouette plot of EDA and ECG features
b) cluster plot of EDA and ECG features

Figure 4 shows a silhouette plot of the clusters obtained
after applying LDA on both the EDA and HRV features
with the total number of 17 features and a scatter plot.
(Fatma, which three features are plotted here) We observe
from this gure that most points in the third, fourth, and
fth clusters have large silhouette values (> 0.8), which
means that these clusters are very well separated from the
neighboring clusters. The rst, second, and sixth clusters
also contain many points with large silhouette values and
the remaining having values between 0.4 and 0.5, which
when looked in conjuction with the third, fourth, and fth
clusters turn out to be reasonably well separated as well. In
the scatter plot in Figure 4, we observe quite distinct clusters

visually, which also implies that after applying LDA on both
EDA and HRV features, we should be able to achieve high
accuracy in classifying the emotions.

Fig. 5. Affect feature clusters with LDA a) silhouette plot of EDA and
ECG features b)cluster plot of EDA and ECG features

4.2 Classication of Long Term Affect State

In this section, we present the accuracy of our proposed
method in classifying whether an emotion was positive or
negative. Recall that happiness and calmness belong to the
positive class while the remaining four emotions belong
to the negative class. Classication at this level can be
useful in tele-health systems to identify if a patient has been
experincing negative emotions, so that a doctor can take
appropriate steps to mitigate any negative impacts of the
persistent negative emotions. We performed 10-fold cross
validation on our data set, where the entire data set was
dividied into two classes, positive and negative. Our pro-
posed method obtained an accuracy of 93.9% when using
only the EDA based features and 94.2% when using only
the ECG based features. We dene accuracy for this set of
evaluation as the number of correct assessments divided by
number of all assessments. In other words, Accuracy = (TN
+ TP)/(TN+TP+FN+FP), where TN, TP, FN, and FP stand
for True Negative, True Positive, False Negative, and False
Positive. Figure 6 shows the confusion matrices obtained
using only EDA features and using the 17 features obtained
after applying LDA.

Fig. 6. Confusion Matrix of Long Term State Classication a) with AR
model b) with AR model and HRV features

4.3 Classication of Short Term Affect State

4.3.1 Direct Classication

In this section, we present the accuracy of our proposed
method in classifying the six emotions directly. Identifying
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the emotional state of a person can be useful in many ap-
plications such as to idenitfy offenders. We again performed
10-fold cross validation on our data set, where this time, the
entire data set was dividied into six classes, corresponding
to the six emotions. Our proposed method achieved an ac-
curacy of just 64.4% when using the EDA features and 89.1%
using the features obtained after applying LDA.When using
the features obtained after LDA, both positive emotions
were recognized with an accuracy of 96.2%. The emotion
with the lowest accuracy was sadness, that was recognized
correctly 78.8% of the times. Figure 7 shows the confusion
matrices obtained using only EDA features and using the 17
features obtained after applying LDA.

Fig. 7. Confusion Matrices of Short Term State Classication a) with AR
model features b) with AR model and HRV features

4.3.2 Hierarchical Classication

Hierarchical Classication works in two stages. In the rst
stage, we identify whether an emotion is positive or nega-
tive. In the second stage, two different classiers are used
separately, one for positive emotions and the other for
negative emotions. If an emotion is classied as negative by
the rst stage, the second stage uses the negative emotion
classier and classies the emotion as one of the four
negative emotions. Similarly, if an emotion is classied as
positive by the rst stage, the second stage uses the positive
emotion classier and classies the emotion as one of the
two positive emotions.

Figure 8 shows the confusion matrix for the detection
of the two positive emotions. We observe from this gure
that the positive emotion classier achieved an accuracy
of 98.9 in classifying the two positive emotions. As the
rst phase achieved 100% accuracy on identifying positive
emotions as positive, our proposed scheme achieved an
overall accuracy of 98.9% in classifying the two positive
emotions, viz., happiness and calmness.

Figure 9 shows the confusion matrix for the detection
of the four negative emotions. We observe from this gure
that the negative emotion classier achieved an accuracy
of 96.1% in classifying the four negative emotions when
using the 17 features obtained after applying LDA. As the
rst phase achieved 93.9% accuracy on identifying negative
emotions as negative, our proposed scheme achieved an
overall accuracy of 90.2% in classifying the four negative
emotions, viz., fear, anger, surprise, and disgust.

The high accuracy of our proposed scheme results from
the use of LDA in reducing the features as well as using
the hierarchical approach of performing the classication

Fig. 8. Confusion Matrices for Hierarchical Classication of Positive
Emotions a) with AR model features b) with AR model and HRV features
Class labels are now included

Fig. 9. Confusion Matrices Hierarchical Classication of Negative Emo-
tions a) with AR model b) with AR model features and HRV features

of emotions. The accuracy values for the models with and
without LDA are shown in Table 4.

TABLE 4
Effect of LDA on recognition accuracy

Positive
Emotions

Negative
Emotions

Overall
Accuracy

without LDA 94.2% 83.6% 88.9%
with LDA 98.9% 90.23% 94.6%

5 CONCLUSION

In this paper, we have presented a new and accurate method
to recognize six different emotions using EDA and ECG
signals. They key technical depth of the paper is in the use of
the AR-HMMs to model the EDA signal and the use of LDA
to enable accurate emotion reognition without requiring a
large number of training samples. We have also presented
an exploratory analysis of our data set that develops insights
into the high classication accuracy of our approach in
recognizing emotions. Unlike other studies, we have taken
a hierarchical approach to classify emotions, where we rst
categorize the emotion as either positve or negative and
then identify the exact emotion. Our experimental results
indicate that with the use of this hierarchical method, our
proposed system achieved an average accuracy of 94.6%
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