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Abstract. We consider a single circuit-switched communication link, depicted

by a Erlang multi-class loss queue, where a customer may vary its required band-

width during its service. We obtain approximately the steady-state blocking prob-

ability of each class of customer. Comparisons with simulation results show that

the approximation solution has a good accuracy. For the proposed model, we also

provide an efficient capacity provisioning algorithm.

1 Introduction

In circuit-switched communication systems and connection-oriented packet switched

networks, a connection is typically allocated a fixed bandwidth which does not vary

over the life of the connection. However, in today’s dynamically changing communi-

cation networks, the bandwidth allocated to a connection may have to vary in order

to accommodate load fluctuations. In this paper, we consider the case where the cus-

tomer’s bandwidth requirements change during its service time. This case has been

motivated by the Link Capacity Adjustment Scheme (LCAS) in the Data over SONET

(Dos) architecture.

Traditional SONET/SDH was optimized to carry voice traffic. It was also defined to

carry ATM traffic and IP packets (PoS). Changes in the capacity allocated to a connec-

tion are done manually. Recently, a novel architecture has been proposed, referred to as

data over SONET/SDH (DoS) which provides a mechanism for the efficient transport

of integrated data services.

It utilizes three schemes, namely, the Generic Frame Procedure (GFP), Virtual Con-

catenation (VCAT), and Link Capacity Adjustment Scheme (LCAS) [13]. GFP is a

simple adaptation scheme that extends the ability of SONET/SDH to carrying differ-

ent types of traffic. Specifically, it permits the transport of frame-oriented traffic, such

as Ethernet and IP over PPP. It also permits continuous-bit-rate block-coded data from

Storage Area Networks (SAN) transported by networks, such as Fiber Channel, Fiber

Connection (FICON), and Enterprise System Connect (ECON).

Virtual concatenation maps an incoming traffic stream into a number of individual

subrate payloads. The subrate payloads are switched through the SONET/SDH network

independently of each other (see for example, Perros [8]).

Virtual concatenation is only required to be implemented at the originating node

where the incoming traffic is demultiplexed into subrate payloads and at the terminating

node, where the payloads are multiplexed back to the original stream. The individual

payloads might not necessarily be contiguous within the same OC-N payload. Finally,
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the number of subrate payloads allocated to an application is typically determined in

advance. However, the transmission rate of the application may vary over time. In view

of this, it can be useful to dynamically vary the number of subrate payloads allocated

to an application. This can be done using the link capacity adjustment scheme (LCAS).

In LCAS, signaling messages are exchanged between the originating and terminating

SONET/SDH node to determine and adjust the number of required subrate payloads.

LCAS makes sure that the adjustment process is done without losing any data.

The calculation of call blocking probabilities in circuit-switched networks has been

extensively analyzed. However, this has been done under the assumption that the band-

width allocated to a customer does not change throughout the customer’s service. For

instance, Kaufman [5], Roberts [9], and Nilsson et al.[7] developed efficient algorithms

for calculating the blocking probabilities of a multi-rate loss queue. In this case, cus-

tomers belong to different classes and each class is associated with a class-dependent

arrival rate, class dependent service rate, and a class-dependent bandwidth requirement

expressed in number of servers. However, a class r customer cannot switch classes dur-

ing its service time, and as a result, it cannot change the number of servers allocated to

it. Call blocking probabilities over an entire circuit-switched network have been com-

puted under a variety of assumptions, see for instance Kelly [6], Ross [10], Alnowibet

and Perros [1], Washington and Perros [12], under assumptions similar to the above

case of a single loss queue.

In this paper, we consider the multirate single loss queue depicting a circuit-switched

communication link, this link may be an optical link, or a wired or wirelss TDM link.

Each server represents a time slot in a TDM link or a subrate stream in an optical link.

Class r calls arrive in a Poisson fashion at the rate of λr, and require initially br servers.

During the service time of the call, the number of servers required may change. The call

is not blocked if fewer servers than currently allocated to it are required. However, the

call will get blocked if additional servers are required and these servers are not available

at that instance. We describe an approximation algorithm for the calculation of the call

blocking probability of each class. To the best of our knowledge this queueing system

has not been analyzed before.

We also use a provisioning method based on Hampshire et al. [4] to determine the

minimum number of required servers.

This paper is organized as follows. In section 2, we describe in detail the multi-class

loss queue under study and how it can be used to model various cases where a customer

may change its bandwidth requirements during its service. In section 3, we describe the

approximation algorithm and in section 4, we describe how to calculate the minimum

number of servers of the loss system so that the blocking probability of any class is less

than a pre-specified value. Numerical examples are given in section 5, and finally the

conclusions are given in section 6.

2 The Multi-Class Loss Queue with Variable-Demand Customers

Let us consider a multi-class loss queue. There are R classes of traffic, and class i cus-

tomers (i=1,2,...,R) arrive at the loss queue in a Poisson fashion with a class-dependent

arrival rate λi requiring bi servers. Class i customers receive an exponentially distrib-
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uted service time with mean 1/µi. The required number of servers is ordered for con-

venience, that is, 0 < b1 ≤ b2 . . . ≤ bR. Upon arrival at the loss queue, a customer is

blocked if the required number of servers is not available. After an exponentially dis-

tributed service with rate µi, a class i customer may depart from the system with proba-

bility pi0 or it may change its class to class k with probability pik where


pij = 1 . A

class change implies that the customer’s bandwidth requirements change from bi to bk.

If bk < bi, then the class change is successful and the bi − bk remaining unused servers

join in the pool of available servers. However, if bk > bi, then bk− bi additional servers

are required. The customer is blocked (i.e. lost) if these bk − bi additional servers are

not all available at that moment.

Define P1(i,j)=pij which is a matrix with size R × (R + 1). Let P be submatrix of

P1 and P has dimension R × R. We have to assure that (I − P ) is invertible so that a

customer entering the system eventually exists.

As will be seen below, the analysis of this system permits a large number of servers

which allows us to model high-bandwidth circuit-switched links. For instance, an OC-

768 link will be modeled by a loss queue with 768 servers where a server represents

an OC-1 subrate stream. The analysis of this model also permits a large number of

classes. This feature gives the model the required flexibility to depict users with a given

bandwidth profile. For instance, let us consider an example where one group of users

requires initially 10 servers. This bandwidth requirement is changed to 20 servers and

after that to 15 servers. Then, we say that the bandwidth profile of this group of users

is: {10, 20, 15}. This will be modeled using three classes, say 1, 2, and 3, as follows.

A customers with this profile arrives at the loss queue with an arrival rate λ1 (arrival

rates of λ2 and λ3 are equal to zero) requiring b1 = 10 servers. After an exponential

service time with a mean of 1/µ1, a customer changes to class 2, thus requiring b2 = 20

servers with probability p12=1. Following an exponential service time with a mean of

of 1/µ2, the customer changes to class 3 with probability p23=1. Finally, after an expo-

nential service time with a mean of 1/µ3, the customer departs, i.e. p30=1. A customer

changing from class 1 to 2, may get blocked if the additional 5 servers are not available.

However, a customer going from class 2 to 3 will never get blocked since it requires

fewer servers than those it held. More complex bandwidth profiles can be constructed

by selecting a set of unused classes, and associating each class i with a set of values

for 1/µi, bi, pij . Each set of classes associated with a specific bandwidth profile can

be seen as forming a closed super-class within which class changes are allowed in a

pre-specified manner. The case where a customer can change bandwidth requirements

in a random manner can be readily accommodated.

3 Calculation of call blocking probabilities

For the classical multi-class loss system without bandwidth adjustments, there are well-

known results.

Let us assume that the system has a total of C identical servers (channels or units of

bandwidths), and each can provide service to any class of arrivals. Let n=(n1, n2, ..., nR)
where nr is the number of class r customers in the system, and let b=(b1, b2, ..., bR).
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The total number of busy servers in state n is

bnT = b1n1 + b2n2 + ...+ bRnR. (1)

The set of all possible states of the system can be described as

Sb = {n : bnT ≤ C}. (2)

It is well known that the multi-class loss system has a product-form solution given

by:

P (n) =

R
∏

i=1

ρni

i

ni!
G−1(Ω), ∀n ∈ Ω (3)

where

G(Ω) =
∑

n∈Ω

R
∏

i=1

ρni

i

ni!
(4)

and ρi = λi/µi. The challenge is to obtain the blocking probability for each class.

Computing the blocking probabilities by directly enumerating all possible states of the

system requires an O(CR) amount of time. The direct method is computationally cum-

bersome and grows exponentially fast even for relatively small systems. Several meth-

ods have been presented in the literature to avoid the exponential complexity of the

computations. One of the most powerful methods for obtaining the blocking probabil-

ities was published independently by Kaufman (1981) [5] and Roberts (1981) [9]. The

Kaufman-Roberts method is a fast recursive algorithm that has a linear complexity of

O(CR). The recursive formula is as follows:

w(k) =
1

k

R
∑

r=1

ρrbrw(k − br), k = 1, 2, ..., C. (5)

where w(0)=1 and ρr = λr/µr. Then, the blocking probability of class r arrivals is

given by:

Br =

C
j=C−(br−1) w(j)
C

j=0 w(j)
, r = 1, 2, ..., R. (6)

It is interesting to know that this formula can be applied to the single class model, as

a fast way of obtaining the blocking probability. Given the blocking probabilities, the

average number of class r customers in the system is

E[Qr] = ρr(1−Br), r = 1, 2, ..., R. (7)

The multi-rate loss model with variable-demand customers described in the previ-

ous section can be analyzed numerically by setting up the underlying rate matrix and

subsequently solving it in order to obtain the stationary probability vector. However, this

numerical approach is limited to small size problems due to the complexity involved in

setting up the rate matrix. It is also difficult to obtain a closed-form expression because

of the variable-demand customers.
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In view of these considerations, we solve this loss system approximately as follows.

We assume that when a customer changes its class from i to another class, say class

j, it simply departs from the loss queue and it re-joins it as a new class j customer.

Its departure from the loss queue and its arrival to the loss queue are not synchronized.

That is, we simply calculate a new arrival rate for class i customers based on the external

arrival rate and all the possible feedbacks due to customers changing their class to class

i. Specifically, we have that the departure rate of class i customers from the loss model

is:

µiE[Qi] = µiρi(1−Bi) = λi(1−Bi) (8)

Then, the total class i arrival rate due to feedback from other classes is:

λhi =

R
∑

k=1

λ̄k(1−Bk)pki (9)

where pki is the probability that a class k customer will change to class i and λ̄k is the

total class k effective arrival rate (i.e., external arrival rate plus feedbacks from the other

classes).

Thus the total effective arrival rate λ̄i of class-i to the loss model is:

λ̄i = λi + λhi = λi +

R
∑

k=1

λ̄k(1−Bk)pki (10)

where λi is the class i external arrival rate to the loss queue.

This equation is often called the traffic equation. The effective arrival rate and the

blocking probability of each class are unknown and have to be decided iteratively.

The total offered load for each class is given by the following nonlinear matrix

equations obtained from (10):

ρ̄ = (I − PT B̄)−1ρ (11)

where I is the identity matrix, B̄=diag([1 − B1, 1 − B2, . . . , 1 − BR]) is a diago-

nal matrix, P is the class-changing probability matrix with its elements P (i, j)=pij ,

ρ̄=[ρ̄1, ρ̄2, ..., ρ̄R] where ρ̄i=λ̄i/µi is the effective offered load of class i and ρ=[ρ1 ,

ρ2,..., ρR]. We can now use (11) in expression (5) in order to calculate the class block-

ing probabilities.

The resulting system of equations is solved by a fixed-point procedure summarized

below.

Summary of algorithm

set small value for degree of accuracy ≤

do (the following steps)

Step 1: Set initially all blocking probabilities and λhi to be zero

Step 2: compute values for total offered load per ρi=λi/µi

Step 3: compute values for blocking probabilities Bi per (6)

Step 4: update values for total offered load per (11)

Step 5: update values for blocking probabilities per (6)
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while (relative error of two successive blocking prob.> ≤ )

end while

The above algorithm for the calculation of call blocking probabilities has a time

complexity of O(log2(CR/≤)CR2). This algorithm is scalable in the number of classes.

A proof of convergence and complexity for a single-class traffic using the bisection al-

gorithm has been sketched out in [11]. For multi-class case considered in this paper,

we do not provide a proof of convergence. Through numerous examples, however, we

observed that this algorithm converges very fast, often in a few tens of steps.

As is known, the Kaufman-Roberts algorithm is numerically unstable, i.e., it causes

overflows when the offered load and/or the total number of servers is very large. This

can be avoided by using a dynamic factoring technique. We use a small number α as a

scaling factor to avoid potential overflows. If upon inspection, it is found that an over-

flow would occur in the computation of w(k) in the Kaufman-Roberts formula, all w(i)
are scaled, i.e., w(i)=w(i)α for i=0, 1, ..k, so that each w(i) is small enough. The process

of dynamic scaling increases the computational costs, but the order of the overall com-

plexity remains unchanged.

We observed that a simpler algorithm can be used in the following two cases:

1). When the total number of servers is very large comparing to the offered loads so

that the blocking probability for each class is very small (for example, less than 0.001),

equation (11) can be approximated by ρ̄ = (I − PT )−1ρ, i.e., we can set all the block-

ing probabilities equal to zero. In this case, we can calculate the effective offered load

from (11) without iterating on the blocking probabilities.

2). If total capacity C is very large, then the feedback rate from class i to any class

j can be simply expressed as λipij . In this case, the solution is simplified as in case (1)

above.

The above two cases provide an upper bound on the effective offered load.

4 Capacity Provisioning

Provisioning optimal total capacity is one of practical ways to meet the blocking prob-

ability and other QoS requirements. In this section, we describe how to calculate the

minimum number of servers C of the loss model so that the maximum blocking proba-

bility of any class is less than a pre-specified value ≤ for a given load. This permits the

blocking probabilities of the remaining classes to also be less than ≤.

This minimum value of C can be calculated iteratively using the fixed-point al-

gorithm described in the previous section. However, when the required capacity C is

very large, this iterative approach becomes CPU intensive since its time complexity is

O(log2(CR/≤)CR2).
It is a long-standing conjecture that the optimal number of servers is of the form

ρ+K
√
ρ for single class traffic where K is a constant depending on the offered load and

blocking probability. This approximation yields very accurate results. Indeed, based on

extensive sensitivity tests, the actual optimum and approximate values rarely deviate by

more than one server, or by more than one percent, whichever is greater (see Grassman
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[3]). Hampshire et al. [4] obtained the following asymptotic expression for the optimum

value of C in the multiclass case:

C =

R
∑

i=1

biρ̄i + ψ( min
1≤i≤R

≤i

bi

√







R
∑

i=1

b2i ρ̄i)

√







R
∑

i=1

b2i ρ̄i (12)

where ≤i is the blocking probability requirement for class i and ψ(x) is the unique

solution of the following differential equation

ψ′(x) =
−1

(ψ(x) + x)x)
,ψ(



2/π) = 0 (13)

In [4], the authors suggest to use a lookup table for values of ψ(x) by using a second

order Runge-Kutta method to compute ψ(x). However, a lookup table may not be prac-

tical if the step size is very small and we do not know the starting point x. In this paper,

we have solved equation (13) to obtain

x−1e−0.5ψ(x)2 −
√
2πerf(0.51/2ψ(x))− x

√
0.5π = 0 (14)

where erf(.) function is defined as follow:

erf(x) =
2√
π

∫ x

0

exp(−t2)dt (15)

Given x, equation (14) can be easily solved numerically for ψ(x). Applied to equation

(12), we obtain the requested total capacity. Because of the asymptotic rule [4], sat-

isfying the requirements provides more than enough capacity for all the other classes.

Through many numerical examples, we observed that the minimum capacity C obtained

using equation (12) is very closed to the exact solution.

5 Numerical examples

In this section, we validate the accuracy of our approximation and provide some in-

sights into the multi-rate loss queue with variable-demand customers. We also provide

a capacity provisioning example.

The approximation results were compared against simulation data. 95% confidence

intervals were also calculated, but since they are extremely small, they are not given

in the results below. In Table 1, we give the approximate and simulation results of call

blocking probabilities for three classes customers with the number of servers C varying

from 20 to 50. The following parameters were used: ρ=[1,2,3],b=[1,2,3], pi0=0.5, i=1,

2, 3. Any class i customer can change to any other class j customer, including its own,

with probability pij=0.5/3, j=1, 2, 3.

Table 2 gives similar results for a large problem with 100 classes and 1000 servers.

The following traffic parameters were used: ρi=i/1000, bi=i, pi0=0.5 and pij=0.5/100,

i=1,2,..100. Table 3 gives similar results as Table 2. The assumptions are the same,

with the exception that ρi=i/300, i=1,2,..100. We observe that the approximation model
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match the simulation results quite well. Some deviations were observed when the block-

ing probabilities are high (see for instance, Table 1, C=20, approximate and simulation

results for class 3).

As mentioned above, our algorithm runs very fast. For instance, the approximation

results given in Table 2 were obtained in 0.363709 seconds in Matlab 7.0.4. However,

the simulation needs much longer time. The simulation results in Table 2 and 3 re-

quired around 30000 seconds. (The simulation was implemented in C program on a

Pentium(R) 4 CPU 3GHz PC).

Table 1. Approximation and simulation results for 3 classes customers

Approximation Approximation Approximation Simulation Simulation Simulation

Capacity class-1 class-2 class-3 class-1 class-2 class-3

C=20 0.1129 0.2252 0.3347 0.1176 0.2345 0.3485

C=25 0.0703 0.1446 0.2221 0.0722 0.1487 0.2285

C=30 0.0405 0.0856 0.1352 0.0413 0.0874 0.1380

C=35 0.0219 0.0474 0.0764 0.0225 0.0486 0.0779

C=40 0.0098 0.0217 0.0359 0.0100 0.0221 0.0366

C=45 0.0036 0.0081 0.0138 0.0037 0.0083 0.0139

C=50 0.0010 0.0025 0.0043 0.0011 0.0026 0.0045

Table 2. Approximation (Appr.) and simulation (Sim) results for 100 classes customers (1)

classi 5 10 15 20 25

Appr. 0.00017 0.00035 0.00054 0.00074 0.00096

Sim 0.00016 0.00034 0.00053 0.00073 0.00094

classi 30 35 40 45 50

Appr. 0.00119 0.00143 0.00169 0.00196 0.00225

Sim 0.00117 0.00140 0.00166 0.00192 0.00220

classi 55 60 65 70 75

Appr. 0.00255 0.00287 0.00321 0.00357 0.00395

Sim 0.00250 0.00281 0.00315 0.00350 0.00387

classi 80 85 90 95 100

Appr. 0.00435 0.00477 0.00522 0.00569 0.00618

Sim 0.00426 0.00468 0.00512 0.00558 0.00606

Next we consider the case where all customers arriving at the loss queue have the

same bandwidth profile. Specifically, new customers arrive at the loss queue as class 1

and require 1 server. After an exponentially distributed service time with mean 1/µ,

a class-1 customer changes to a class-2 customer with a bandwidth requirement of

2 servers with probability p12=1. After another exponentially distributed service time
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Table 3. Approximation (Appr.) and simulation (Sim) results for 100 classes customers (2)

classi 5 10 15 20 25

Appr. 0.02635 0.05229 0.07780 0.10290 0.12758

Sim 0.02891 0.05751 0.08573 0.11291 0.14021

classi 30 35 40 45 50

Appr. 0.15184 0.17568 0.19909 0.22208 0.24465

Sim 0.17061 0.19782 0.22293 0.24923 0.27341

classi 55 60 65 70 75

Appr. 0.26679 0.28852 0.30982 0.33069 0.35115

Sim 0.30208 0.32619 0.35060 0.37237 0.39684

classi 80 85 90 95 100

Appr. 0.37118 0.39081 0.41001 0.42880 0.44718

Sim 0.42342 0.44494 0.46745 0.49198 0.50767

with mean 1/µ, the class-2 customer changes to a class-3 customer with a bandwidth

requirement of 3 servers with probability p23=1. Finally, the class-3 customer departs

with probability p30=1 after an exponentially distributed service time with mean 1/µ.

The offered loads are ρ1 > 0, ρ2=0, ρ3=0, i.e., no external class-2 and class-3 arrivals

occur. Given this load profile, we compare the following three bandwidth allocation

strategies.

Case 1 (variable-demand policy): bandwidth is allocated on demand whenever a cus-

tomer changes a class. In this case, a customer may be blocked upon arrival to the loss

queue as class-1 customer and each time it changes a class. The class-dependent mean

service time is 1/µ.

Case 2 (maximum service policy): A class 1 customer is allocated the maximum number

of servers, i.e., 3 servers, upon arrival as class 1 customer to the loss queue. The mean

service time is : (a). 2/µ in order to keep the product of bandwidth and service-time

the same as case 1; or (b). 3/µ so that the arrival will use the same mean service time

as case 1. The implication in case (a) is that the customer will take full advantage of

the 3 servers allocated to it. In case (b) on the other hand, we assume that the customer

follows its bandwidth profile and it uses only the required number of servers. A class 1

customer is blocked if these servers are not available upon arrival.

Case 3 (minimum service policy): A class 1 customer is not allowed to change band-

width requirements. It is allocated the minimum number of customers, i.e., 1 server for

a service time 6/µ in order to keep the product of bandwidth and service-time the same

as cases 1 and 2. A customer is blocked if no server is available upon arrival.

Case 1 was analyzed using our approximation algorithm, whereas cases 2 and 3

were analyzed using the Erlang loss formula for single class traffic. In order to facil-

itate the comparison among these three cases, we calculate the average call blocking

probability for the case 1 as follows:

Bavg =

R
∑

r=1

ρ̄rbrBr/

R
∑

r=1

ρ̄rbr (16)
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We show the results in Table 4 for various values of the class-1 offered load ρ1 for

a total capacity C=100.

Table 4. Call blocking comparison among variable-demand service, Max and Min service

ρ1 15 16 17 18 19 20 21 22

Case1 0.0495 0.0691 0.0915 0.1126 0.1336 0.1541 0.1740 0.1932

Case2a 0.0805 0.1109 0.1430 0.1755 0.2075 0.2384 0.2680 0.2959

Case2b 0.3093 0.3472 0.3817 0.4131 0.4417 0.4678 0.4917 0.5136

Case3 0.0270 0.0539 0.0874 0.1238 0.1606 0.1963 0.2302 0.2620

We note that the variable demand policy outperforms the maximum and minimum

service policies when the offered load is medium or large. This observation holds for

many other similar examples (not reported here).

Finally, in Table 5 we show the minimum required number of servers for a 3-

class Erlang loss queue, so that the blocking probability is less than 0.01 for all three

classes. The required bandwidth for the three classes is b=[1,2,3], pi0=0.5 for i=1,2,3

and pij=0.5/3, j=1,2, 3 and i=1,2,3. The external offered load ρ=[ρ1, ρ2, ρ3] was varied.

For each set of value of ρ, we computed the minimum required servers using equa-

tion (12) (labelled as ‘Asmp’) and also using our algorithm in an iterative manner as

explained at the beginning of section 4 (labelled as ‘Appr.’).

Table 5. The optimized capacity vs. offered load (ρ) for 3-classes traffic

Offered load Method Capacity Offered load Method Capacity

[0.14 0.29 0.43] Appr. 15 [10,20,30] Appr. 301

[0.14 0.29 0.43] Asmp 13 [10,20,30] Asmp 300

[1,2,3] Appr. 46 [40,80,120] Appr. 1088

[1,2,3] Asmp 44 [40,80,120] Asmp 1087

[3,6,9] Appr. 107 [100,200,300] Appr. 2629

[3,6,9] Asmp 105 [100,200,300] Asmp 2629

6 Conclusion

In this paper, we described a model for calculation of call blocking probabilities in a

multi-rate Erlang loss queue where the customers are allowed to change their bandwidth

requirements during their service. Comparisons against simulation data showed that the

algorithm has a good accuracy. The model was also used to evaluate different allocation

policies and capacity provisioning, and we hope to expend this work in an upcoming
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paper. Also we are currently extending the algorithm to the case where the bandwidth

requirements of each customer in service are modified by the network manager as a

function of the congestion level.
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