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Fast identification of faulty sensors is necessary for guaranteeing their robust functions in diverse

applications ranging from extreme weather prediction to energy saving to healthcare. We present an

automated machine-learning based framework that can detect anomalies of temperature sensor data in

real-time. We adopted a purely temporal approach that utilizes a univariate time-series (UTS) generated

by a single sensor. The framework divides the UTS into subsequences, models each subsequence

stochastically as an autoregressive function, and finally mines the function parameters with a One-Class

Support Vector Machine (OC-SVM) that classifies any outlier as an anomaly. Extensive experimentation

showed that the framework identifies correctly with high degree of accuracy normal and anomalous data.

1. Introduction

The Internet-of-Things (IoT) has attracted a lot of popularity and promises to play an important role in the

future. Its applications are manifold extending from smart connected homes to healthcare to transportation

[1]. With advancements in the IoT technologies, a variety of sensors with computing and communication

capabilities are increasingly being deployed to facilitate diverse energy and environmental applications.

With the rising concern of global warming and climate change, the development of sensors that can

accurately indicate drastic changes in local weather and distinguish patterns of gradual climate change is

emerging as an indispensable task for the protection of the environment [2-4]. Herein, we present an

automated real-time machine-learning based framework that can detect anomalies in the sensor data of a

critical weather variable, temperature. This is crucial for rapid identification of faulty sensors and

initiating corrective measures.

Anomaly detection techniques are often applied to the data collected from sensors to allow prompt

identification of failures (or impending failure), misconfigurations, and degradations. Data-driven

anomaly detection techniques are widely used. However, a number of them focus on spatial and

spatiotemporal methodologies [5-7], where failure detection for each sensor is influenced by data

observed by its neighbors. Such approaches are formulated on the assumption that spatially co-located

sensors are observing similar values for the same parameters. They may not work in the cases of sparsely

distributed sensor networks; where neighboring sensors are geographically far apart and may end up

monitoring quite different conditions. In such scenarios, spatial techniques may introduce errors in the

anomaly detection.



Here, we propose an anomaly detection framework that is purely temporal in nature and utilizes a

univariate time-series (UTS) generated by a single sensor. There are several existing methods proposed

for anomaly detection in an UTS [8-10], including One-Class Support Vector Machines (OC-SVM) [11-

15] and different kinds of autoregressive models [16-20]. It is generally observed that a highly

imbalanced binary class distribution exists between normal and anomalous behavior and is an important

classification problem [21, 22]. Anomalies are rare and all characteristic features may not appear in

training instances. OC-SVM is a well-known technique for dealing with this problem—it is a sparse

solution maximizing the separation between normal and anomalous data [23]. Extensive research has also

been carried out with prediction-based statistical approaches such as univariate autoregressive model

(AR), autoregressive and moving average model (ARMA), and autoregressive integrated moving average

model (ARIMA). Such models attempt to predict future values of the UTS based on past observed values.

The deviation between predicted and observed values help in identifying anomalies. Our approach mines

the temporal nature of an UTS. First, it divides the UTS into subsequences through a sliding window so

as to capture the recent nature of the UTS. Then, it models each of them stochastically using an

autoregressive function, and finally mines the parameters of the stochastic models with an OC-SVM. As

in prediction-based models, we also assume an underlying stochastic process that defines the time-series.

However, predictions are error-prone and need to be avoided. So, we mine the stochastic models instead

of using them for predictions. The assumption of an underlying stochastic process governing the UTS

enables the clustering and classification of the model parameters. The OC-SVM forms a tight boundary

around the normal class and any outlier is regarded as an anomaly.

We have investigated our anomaly detection framework on the temperature data collected by the State

Climate Office of North Carolina [24]. The results of our experiments reflect that our approach was

effective in capturing the trends and seasonality of temperature and identifying anomalies. Our work can

be extended further for anomaly detection in other weather variables such as air pressure, humidity, and

wind velocity. Note that each such variable may be governed by a distinct stochastic process. Therefore,

the same approach may be inadequate for all weather variables, which may warrant specific modeling for

each.

The remaining content is organized as follows: Section 2 describes the proposed anomaly detection

framework. Section 3 outlines the different experiments carried out and evaluates its performance.

Finally, we provide our concluding remarks in section 4.

2. Anomaly Detection Framework

2.1 The Autoregressive Nature of UTS

First and foremost, we need to analyze the nature of the UTS temperature. This will aid in an

understanding of our design decisions. We have access to the temperature data collected by the State

Climate Office of North Carolina [24]. Our study was conducted on data collected by the weather station

LAKE - Lake Wheeler Road Field Lab. It is situated in the city of Raleigh, Wake County, North Carolina

(Latitude: 35.72816°, Longitude: -78.67981°, Elevation: 382 ft. above sea level). The results provided in

section 2 are from experiments conducted on data collected in the year 2014. Similar experiments were

also conducted for the years 2011-2018 and we obtained similar results. The experiments described in

section 3 were conducted on the entire dataset, comprising of data collected in the years 2011-2018.



Temperature is observed and recorded every minute. Each datapoint undergoes quality control by the

climate office and is eventually marked ‘good’ or ‘bad’. The database does occasionally suffer from

missing and bad data. Since temperature always changes gradually, we use interpolation for their

reconstruction. Such occurrences are rare and have no significant impact on our methodology.

In Fig. 1, we have presented temperature against time to provide a sense of its behavior. Since

temperature is recorded every minute, the dataset is extremely large. For convenience, instead of

presenting the data for the whole year of 2014 (i.e., 365*24*60 = 525600 minutes), we give the data for

March, June, September, and December. Experiments and analysis, however, were conducted with the

entire dataset and identical conclusions were reached.

(a) March (b) June

(c) September (d) December

Fig. 1: Temperature vs Time

A few observations can be drawn form Fig. 1. The data clearly displays a distinct seasonality. Nights are

usually cooler than days. As the night progresses to dawn to daylight, temperature keeps rising.

Conversely, as the day advances to dusk into darkness, temperature starts falling. If perceived carefully,

disticnt spikes can be noticed in each month’s data, where indicates the number of days in each month.

Also, change in temperture is gradual and drastic changes were never noticed in the entire dataset.

In Fig. 2, we have further examined the data by plotting its auto-correlation function. As is evident from

the plots, temperature at time is highly correlated with that of and starts decaying as time progresses.



Thus, it can be concluded that temperature at any point of time is strikingly similar to that in the recent

past; and therefore, the past may indicate the future. distinct spikes can be noticed in these plots, as well.

This is because temperature during daytimes over multiple consecutive days are positively correlated with

each other, while being negatively correlated to that at nights.

(a) March (b) June

(c) September (d) December

Fig. 2: Auto-correlation function of Temperature

Clearly, the data exhibits an autoregressive nature. To further reinforce our inference, we plot its partial

auto-correlation function in Fig. 3. The PACF indicates that temperature at time is highly correlated with

that at time and moderately correlated to that at and . The remaining past values can be ignored in this

case as they have insignificant influence. In Fig. 3, the lines corresponding to PACF = 0.1 and PACF = -

0.1 identify the same. Hence, we may conclude that temperature can easily be modelled as an

autoregressive process of order 3 or AR(3), as described below:

where is temperature at time , is a constant, and ,, are the coefficients of the AR(3) model. The sequence

consists of independent and identically distributed (i.i.d.) random variables, known as residuals (or

errors), that give the AR its stochastic nature. The residuals are uncorrelated and they are normally

distributed with zero mean and variance .



(a) March (b) June

(c) September (d) December

Fig. 3: Partial auto-correlation function of Temperature

2.2 Overview of the Proposed Framework

In this section, we outline the anomaly detection framework that executes in real time. We divide each

day into two successive non-overlapping 12-hr periods, and . Let be the set of all consecutive 12-hr

periods in one year (365 consecutive days) preceding :

is the period of inspection for anomalies, and is used to train the anomaly detection framework. Once

has been inspected and validated without any anomalies, becomes a part of , so that the new becomes,

The new is then used to validate . If anomalies are discovered in , an alarm is raised and appropriate

action is taken immediately. The anomalous data in the new is either rectified, or ignored in case

rectification is not possible. For the rest of our discussion, we use the UTS as the training period and the

UTS as the inspection period.



Fig. 4: Broad Overview of the Anomaly Detection Framework

2.3 Generation of the subsets using a sliding window

Fig. 4 provides a graphical overview of the framework. We start by first dividing the UTS into smaller

overlapping subsets using the sliding window scheme. As shown in Fig. 5a, each subset has a duration of

6 hours, with each data point being one minute. Suppose signifies the start of . The first subset consists of

the data points corresponding to minutes to . Now, we shift the timeframe by 2 hours, so that the second

subset cosists of the data from the last 4 hours of the first subset followed by the subsequent 2 hours. That

is, the second subset contains the data points from to , the third subset contains the data points from to ,

and so on. In this manner, is divided into smaller overlapping subsets, where each subset overlaps with

the last 4 hours of the preceeding one. We fit a separate separate AR(3) model to each subset and the

respective parameters are recorded, thus producing separate sets of five parameters .

As illustrated in Fig. 5b, the UTS is also divided into smaller overlapping subsets in a similar manner.

However, unilke in , the first subset consists of the first 2 hours of and the preceeding 4 hours, i.e., the

last 4 hours of . It spans over the minutes to . Now we proceed as in G, so that the second subset spans

over the minutes to , the third over the minutes to , and so on. Let be the total number of subsets. Each

subset is again fitted into separate AR(3) functions, thus generating separate sets of parameters .



Fig. 5a: is divided into overlapping subsets

Fig. 5b: is divided into overlapping subsets

As shown in Fig. 4, the next step is to classify the anomalous data in accordingly. However, temperature

is a continuous random variable, varying with time, rendering the raw data points unsuitable for

classification. Therefore, we need to define a feature space, which can be utilized as an input to the

classification problem.

2.4 The Feature Space

Through Fig. 6, we visualize the sets of parameters generated from a sample , in order to see how the

parameters are clustered. As it is impossible to display the five parameters in a single plot, we reduce the

original space to a new space through principal component analysis. Fig. 6 presents a 3D plot of the

principal components. All other experiments were conducted on the original space.

Theoretically, the entire dataset should be representable by a single fixed model, where do not change

with time. Anything else can be classified as anomalous. Had the data followed an AR(3) process strictly,

we would have ended up with sets of identical parameters and the scatterplot in Fig. 6 would consist of a



single point. However, practical datasets suffer from different types of observational and environmental

errors. Some errors may also creep in during various estimations that we need to perform on the data.

Again, since we train a separate AR(3) function on each subset in , which are of 6 hours each, local trends

or seasonality may influence the estimates slightly. Nevertheless, we observe that the scatterplot in Fig. 6

is very dense, indicating that the AR(3) models are not very different. It also indicates that the sets of

parameters can be easily clustered and the probability that anomalies get classified accordingly is high.

Hence, the 5-tuple data set of observations forms our feature space that we will use for classification.

Fig. 6: Scatterplot of the three principal components

2.5 Classification Based on One-class -SVM

As shown in Fig. 4, a Support Vector Machine (SVM) is first trained on the sets of the 5-tuple feature

vector from . It then classifies each of the sets of feature vector from as accurate (classified as +1) or

anomalous (classified as -1). We use LIBSVM [25] for our experiments.

We use a -SVM [26], with only one class [27] representing all accurate feature vectors. A -SVM

involves a regularisation parameter , which helps implement a penalty on the misclassifications

committed while separating the classes. is always between and represents the upper bound on the

fraction of training errors and lower bound on the fraction of support vectors in the trained model. The

kernel of the -SVM is the radial basis function (RBF): , where is the squared Euclidean distance between

the two feature vectors, and , and is a parameter of the RBF function. is used to tune the kernel.

Both and can be used to tweak the trained SVM for higher accuracy. It is necessary to find suitable (, )

pairs. is varied between and and between and . For each (, ) pair, a 10-fold cross-validation is

performed on the sample and the corresponding accuracy is recorded. We must keep in my mind that the

framework does not classify each raw data point as accurate or inaccurate. Rather each subset is evaluated

and classified accordingly. The accuracy of classification is the ratio of the number of correct

classifications divided by the total number of classifications. Since training data consists of only accurate

values, the correct classification of each subset is and indicates a misclassification. The results are



presented in Fig. 7. High accuracy is obtained for a wide range of and values. The highest accuracy

obtained is 99.93%, corresponding to the (, ) pairs in TABLE I. These were selected for the remaining

experiments. All other (, ) pairs are ignored.

Fig. 7: 3D surface plot of the accuracy for different (, ) pairs

TABLE I: (, ) pairs with the highest accuracy

99.93% 99.93% 99.93% 99.93%

99.93% 99.93% 99.93% 99.93% 99.93%

99.93% 99.93% 99.93% 99.93%

99.93% 99.93%

3. Experiments and Results

Experiments were conducted on the data available for 2011-2018. Two kinds of experiments were carried

out, namely, a) on accurate data, with only accurate values, and b) on anomalous data, which may consist

of single anomalies or a mixture of anomalies introduced to the accurate data.

3.1 Experiments on Accurate Data

These experiments were performed on real temperature values, recorded by the climate office. As

described in section 2.1, missing and bad data are reconstructed using interpolation. This ensures that the

resulting data set contains only accurate values. In these experiments, we measure how accurately the

anomaly detection framework classifies accurate data as , while indicates misclassification. As can be

seen in TABLE II, a high accuracy is achieved.

TABLE II: Accuracy of classification of accurate data



99.98% 99.98% 99.98% 99.98%

99.98% 99.98% 99.98% 99.98% 99.98%

99.98% 99.98% 99.98% 99.98%

99.98% 99.98%

3.2 Experiments on Anomalous Data

For these experiments, we created anomalous data artificially by introducing errors in accurate data.

These errors are generated using mathematical error models. The decision to synthesize anomalous data

rather than use those available naturally was due to several reasons. First of all, not a lot of anomalous

data is available to us. Also, we wished to study the performance of the framework for various types of

errors, and prior knowledge of the error models help us understand the results better. Finally, since we

have used mathematical models for error generation we were able to tweak the parameters of the error

models and evaluate the extent till which the framework performs efficiently.

Fig. 8: Generating anomalous data by introducing errors in accurate data

Fig. 8 illustrates how errors are introduced into accurate data at time , so that the rest of the data is

anomalous. Subset , created with data points before , contains only accurate data. However, anomalies

start creeping into the subsequent subsets. Subset has a third of its data anomalous; subset has two-thirds

of its data anomalous; while subset is entirely anomalous and so is each succeeding subset. We

introduced errors only at the start of any subset. Errors can be introduced anywhere within the subset

producing similar results.



A subset is considered anomalous if it is classified as In the example shown in Fig. 8, subset with only

accurate data should be ideally classified as , while the sebsequent subsets as since anomalies are present

in them. Therefore, theoretically, the earliest detection of an anomaly is possible at , when subset is

classified as . However, practically, the framework may or may not be able to correctly classify

anomalous subsets right away. Detections may happen later. Nevertheless, anomalies should ideally be

detected onwards, since the entire subset is anomalous. Table III demonstrates the classification results

produced by the framework in certain scenarios of anomaly detection with respect to the example in Fig.

8.

TABLE III: Few scenarios of anomaly detection (Reference: Fig. 8)

Class of Subset

Detection by

Detection by

Detection by

The following kinds of error models were investigated: a) Gaussian errors, b) Exponential growth and

decay, c) Linear growth and decay, d) Exponential errors, and e) Linear errors.

3.2.1 Gaussian Errors

In the first set of experiments, Gaussian error is introduced in the accurate data. Gaussian error reflects

white noise and is defined as:

where is Gaussian error, and and are the mean and standard deviation of the Gaussian distribution. For

our experiments, we have used the standard Gaussian distribution () to reflect white noise. Also,

where and are respectively, anomalous data generated and accurate data extracted at time .
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Fig. 9: Percentage of anomalies detected in case of Gaussian errors

Fig. 9 demonstrates how many of the anomalies are detected and how soon. We experimented with all the

(, ) pairs in Table I, but for presentation purposes we only provide the results for four pairs. The results

for the other pairs are similar. We varied from 1.0 to 0.2. For each value of , we show how many of the

anomalies are detected by , , and . Obviously, we need to detect anomalies as soon as possible. As evident

in Fig. 9, for higher , large errors are introduced and the framework can easily detect most of them by .

However, as decreases, producing smaller errors, more time is required.

The performance of the framework deteriorates considerably as goes below 0.2. These results are not

documented here. This is expected as such low standard deviations produce very small errors so that the

anomalous data greatly resembles the accurate data, making it almost impossible to detect. Results for

experiments with are not documented either as high standard deviations generate large errors which are

easily detectible.

3.2.2 Exponential Growth and Decay



In this set of experiments, we investigated anomalies due to exponential growth or exponential decay of

accurate data. The exponential growth or decay may be described as,
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Fig. 10: Percentage of anomalies detected in case of Exponential growth

where is the anomalous data generated at time , is the last known accurate data, and is the rate of

exponential growth/decay. If is positive, we have exponential growth and if negative, exponential decay.
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Fig. 11: Percentage of anomalies detected in case of Exponential decay

We varied from 0.1 to 0.001 in case of exponential growth as in Fig. 10 and from -0.1 to -0.01 in case of

exponential decay as in Fig. 11. Both in cases of exponential growth and decay, as increases, deviation

between anomalous and accurate data increases. Therefore, for higher , detections happen faster. Also,

since the very nature of the data changes – autoregressive (accurate) to exponential (anomalous), each and

every anomaly gets detected sooner or later.

We experimented with values of beyond the given ranges for both exponential growth and decay. They

are not documented here as they follow similar trends.

3.2.3 Linear Growth and Decay

In the third set of experiments, anomalous data was created from linear growth or decay of accurate data,

defined as,



where is the anomalous data generated at time , is the last known accurate data, and is the rate of linear

growth or decay. If is positive, we get linear growth and if r negative, linear decay.
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Fig. 12: Percentage of anomalies detected in case of Linear growth

We varied from 3.0 to 1.0 in case of linear growth as in Fig. 12 and from -3.0 to -1.0 in case of linear

decay as in Fig. 13. For both linear growth and linear decay, as increases, deviation between anomalous

and accurate data increases. Consequently, for higher detections happen faster. As in exponential

growth/decay, since the very nature of the data changes – autoregressive to linear, all anomalies get

detected sooner or later.

Experiments were also carried out for values of beyond the specified ranges. The results follow similar

trends.
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Fig. 13: Percentage of anomalies detected in case of Linear decay

3.2.4 Exponential Errors

Experients were carried out with anomalous data created by introducing exponential error in accurate

data. The exponential error may be defined as,

where is error at time , is a constant, and is the rate of exponential error. is always positive,

representing exponential growth in consecutive errors. An exponential decay in consecutive errors does

not make sense in this scenario. For our experiments, we have chosen , as the set of results produced is

convenient for us to be able to express our insights. Also,



where and are respectively, anomalous data generated and accurate data extracted at time . Here, we

have documented two sets of results, corresponding to , where an exponential error is added to accurate

data and , where an exponential error is subtracted from accurate data.
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Fig. 14: Percentage of anomalies detected in case of Exponential errors (additive)

In our experiments, we varied from 0.1 to 0.03 both for additive and subtractive exponential errors as

shown in Figs. 14 and 15 respectively. In both cases, as increases, larger errors are generated.

Consequently, for higher detections happen faster.

Experiments for both additive and subtractive exponential errors were performed for values of and

similar results were obtained.
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Fig. 15: Percentage of anomalies detected in case of Exponential errors (subtractive)

On the other hand, performance decreases considerably as decreases below 0.03, and those results are not

documented here. When we say performance decreses considerably, we mean most of the anomalies are

not detected by . They may be detected later. For example, when =0.02, first detection happens at . This is

expected as at such a low very small errors are created, so that the anomalous data greatly resembles

accurate data, making it almost impossible to detect. We can explain this issue as a tug of war between

autoregressive nature of accurate data and exponential nature of errors. As long as the exponential nature

supersedes the autoregressive nature significantly, we can expect fast detection of anomalies.

3.2.5 Linear Errors

In the last set of experiments, anomalous data is created by introducing linear error in accurate data.

Linear error may be defined as,



where is the error generated at time , is a constant, and is the rate of linear error. As in exponential

errors, is always positive as a linear decay in consecutive errors does not make sense here. We also

choose the same . Now,

where and are the anomalous data generated and the accurate data extracted at time , respectively. We

document two sets of results, corresponding to , where a linear error is added to accurate data and , where

a linear error is subtracted from accurate data.
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Fig. 16: Percentage of anomalies detected in case of Linear errors (additive)

We varied from 5.0 to 3.0 both for additive and subtractive linear errors as demonstarted in Figs. 16 and

17 respectively. In both cases, as increases, larger errors are generated, leading to faster detections.

Experiments for both additive and subtractive linear errors were performed for values of r > 5.0. They are

not documented as they exhibit similar trends. Performance deteriorates considerably as decreases below

3.0, and those results are not documented as well. As for exponential errors, there exists a tug of war



between autoregressive nature of accurate data and linear nature of errors. As long as the linear nature

dominates over the autoregressive nature, we can expect fast detection of anomalies.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

81.74

%

98.64

%

99.97

%

79.84

%

98.33

%

99.94

%

78.97

%

98.14

%

99.93

%

77.44

%

97.81

%

99.90

%4.65

%

0.72

%

0.03

%

5.33

%

0.82

%

0.06

%

5.33

%

0.93

%

0.07

%

5.63

%

1.03

%

0.06

%

Detection by t+120 Detection by t+240 Detection by t+360

Fig. 17: Percentage of anomalies detected in case of Linear errors (subtractive)

The framework faces an issue in detecting anomalies in case of linear errors, especially for lower values

of . In all other experimets, once an anomaly is detected, that is once a subset is classified as , the

succeeding subsets get classified as as well. The same is not observed in case of linear errors. Even if an

error is detected at some point, there is no guarantee the succeeding subsets get classified as . For

example, if a linear error is introduced at time , classifications at, , and may be , , respectively.

4. Conclusion

In this paper, we have proposed an automated machine-learning based anomaly detection framework for

identification of a flawed temperature sensor in real-time. We have focused on a purely temporal

approach, where the UTS generated by a single temperature sensor is used in monitoring its robust

operation. The framework first divides the UTS into overlapping subsequences through a sliding window.



It then models each subsequence stochastically as an AR(3) model, and finally mines the AR(3)

parameters with a One-class -SVM. The OC-SVM forms a tight boundary around the normal class and

any outlier is regarded as an anomaly. We have evaluated our framework on the temperature data

collected by the State Climate Office of North Carolina [24]. Experiments were conducted with both

accurate and anomalous data. However, since anomalies are scarce in the available dataset, we

synthesized anomalous data by introducing errors in the available temperature data. Our proposed

framework exhibits a very good peformance in both cases. The implication of our work on real-time fault

detection in temperature sensors will be essential for pattern recognitions in drastic weather and climate

change. However, consideration of other weather variables such as air pressure, humidity, and wind

velocity will be necessary. Due to their complex and unique stochastic behavior, each of them will require

very specific modeling that may go beyond standard regression techniques.
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