
Bandwidth Estimation for Video Streaming Under Percentile Delay,

Jitter, and Packet Loss Rate Constraints Using Traces

Bushra Anjum (Corresponding Author)
banjum@ncsu.edu

Computer Science Department

NC State University

Raleigh, USA

Phone: (919) 515-2041

Fax: (919) 515-5039

and

Harry Perros

hp@csc.ncsu.edu

Computer Science Department

NC State University

Raleigh, USA

Abstract:

We present and use a CPU-efficient activity-based simulation model to calculate the sojourn time of a

packet and the packet loss rate in a tandem queueing network that depicts the path of a video flow. The

video flow is characterized by a packet trace. Background traffic, also characterized by a trace, is

allowed in the tandem queueing network. In our analysis we used real video traces (Telepresence,

WebEx, Jabber) and also generalized our results using traces generated by a theoretical model of a

video arrival process depicted by a Markovian Arrival Process. Using this simulation model we

calculate the bandwidth required for a video flow, so that a given set of constraints for the percentile

end-to-end delay, jitter, and packet loss rate are satisfied. We also show that the bandwidth required for

n identical video streams that follow the same path through an IP network, so that that the end-to-end

percentile delay remains the same, is a linear function of n. Further, it is experimentally depicted that

for infinite-capacity queues the bandwidth required to satisfy the percentile end-to-end delay constraint

also satisfies the jitter constraint. And for finite-capacity queues, the bandwidth required to satisfy both

the percentile end-to-end delay and the packet loss rate constraints also satisfies the pair of jitter and

packet loss rate constraints.

Key words

Activity-based simulation, bandwidth estimation, video traces, percentile end-to-end delay, packet loss

rate



2

1. Introduction

Video traffic is widely expected to account for a large portion of the traffic in future wired and

wireless networks. Best practices dictate that in order to guarantee a good QoS for interactive

video, the end-to-end delay has to be less than 150 msec (though delays up to 200 msec can

also be tolerated), the jitter has to be less than 30 msec, and the packet loss rate less than 1%,

see [1]. Interestingly enough, little is known about how much bandwidth should be allocated

to an interactive video so that the above three QoS metrics can be satisfied. In this paper, we

address this issue using video traces. That is, for a given video trace we calculate the required

bandwidth that has to be allocated on each link along the path of the video flow, so that the

above three QoS metrics are satisfied. We note that the work presented here is applicable to

any trace and any combination of values of the above three QoS metrics.

We formulated this problem as a tandem queueing network consisting of N queues

where each queue represents the output port of a router along the path of the video flow. More

specifically, it represents the particular DiffServ queue that serves all video flows, such as

queue AF41. The video flow, expressed by a trace of IP packets, is offered to the first queue,

the output of which is offered to the second queue, and so on. We refer to this traffic as the

tagged stream. In addition, we assume a background arrival process to each queue, referred to

as the background stream, which represents other video flows also served by the same DiffServ

queue. The service time at each queue is constant, proportional to the packet length of each

packet in the trace. For this queueing network, we obtain the end-to-end delay, jitter, and packet

loss rate, given that both tagged and background streams are described by traces.

We note that the analysis of a tandem queueing network with tagged and background

arrival processes is difficult, and to the best of our knowledge there are no exact solutions. One

aspect of this problem that has been studied extensively is the inter-departure time of the tagged

stream from a queue that also serves background traffic. Dasu [7] obtained a closed–form

expression of the Laplace transform of the inter–departure time of the tagged traffic in a two–

class single server queueing system where the tagged arrival process is a generalized phase

process, the background arrival process is Poisson, and the service time follows a phase–type

distribution. Several approximations have also been reported under a variety of assumptions.

In Kumaran et al. [13], the tagged and the background arrival processes were assumed to be

matrix exponential (ME), and the service time distribution was also an ME. The authors

obtained an approximation for the tagged departure process. More recently, Geleji and Perros

[9] obtained an exact numerical solution of the inter-departure time of a tagged process from a

single queue, assuming that both the tagged arrival process and the background arrival process

are MMPP, and that the service time is exponentially distributed. Under more general

assumptions, Geleji and Perros [10] also gave an analytic upper bound of the tagged inter-

departure time from a tandem queueing network of any number of queues.



3

In [11], Ioannis and Stavrakakis proposed a queueing system to study the distortion

induced in a tagged ATM stream. A discrete-time analysis in the M/G/1 paradigm yielded

numerical results for cell delay, delay jitter, and inter-departure time probability distributions

of an ATMmultiplexer. Similarly, Conti et al. [5] evaluated the impact of temporal and spatial

correlations on the end-to-end performance of a tagged traffic stream which can be due to

background traffic or partial commonality in the routing path. They proposed a binary

queueing activity indicator to provide for a simple mechanism to capture these correlations.

Feng and Chang [8] used single-queue decomposition to analyze a tandem queueing network

with general service times where the arrival process to the first queue consisted of multiple

heterogeneous MMPPs. They proposed two approximation schemes for calculating the mean

end-to-end delay for a single (tagged) MMPP stream. Central to the proposed schemes is the

calculation of the departure process of the tagged MMPP stream by a two-state MMPP

calculated using the first three moments of the inter-departure time and the lag 1

autocorrelation of the successive inter-departure times. Anjum et al [2] considered a tandem

queueing network of infinite capacity queues with a two-state MMPP tagged arrival process

and exponentially distributed service times. No background traffic was considered. They

showed experimentally that the approximation of the departure process by a two-state MMPP

proposed in Feng and Chang [8] does not give good results due to the fact that it does not

capture well the autocorrelation structure of the departure process. Instead of nodal

decomposition, the authors proposed an efficient and accurate approximation method for

calculating a given percentile of the end-to-end delay using an exact upper and lower bound.

Using this method, they calculated the required bandwidth that should be allocated on each

link along the path to satisfy a given percentile of the end-to-end delay. The algorithm proposed

in [2] was extended in Anjum and Perros [3] to the case where the tagged arrival process is a

two-stage Markovian Arrival Process (MAP2). The authors showed experimentally that the

MAP2 is a good model for a video trace.

The algorithm described in [3] cannot handle the presence of background traffic that

typically competes with a tagged video within the output port of a router. In this paper, we use

a CPU-efficient activity-based simulation model to calculate the end-to-end delay of each

packet in a tagged video stream in the presence of background video streams, for given packet

traces of the tagged and background streams. These traces may represent a single stream or a

set of multiplexed streams. Delay percentiles and the jitter can be easily estimated from the

calculated end-to-end delay of each packet. In addition, this activity-based simulation model

can be trivially extended in order to calculate the packet loss rate. The minimum amount of

bandwidth required, so that the three QoS metrics of delay percentile, jitter, and packet loss

rate are satisfied, is easily obtained using a simple search algorithm. We show that the

bandwidth required for n identical video streams that follow the same path through an IP

network, so that that the end-to-end percentile delay remains the same, is a linear function of

n. Also, we observed experimentally that for infinite-capacity queues the bandwidth required



4

to satisfy the percentile end-to-end delay constraint also satisfies the jitter constraint. For finite-

capacity queues, the bandwidth required to satisfy both the percentile end-to-end delay and the

packet loss rate constraints also satisfies the pair of jitter and packet loss rate constraints.

The paper is organized as follows. In the next section, we describe the tandem queueing

network under study and then present the activity-based simulation model. In section 3, we

describe the three traces used in our experiments presented in this paper. These traces represent

three different video applications, namely, Telepresence, WebEx, and Jabber. In section 4, we

consider k identical video streams that follow the same path through an IP network, and we

examine the relation between the bandwidth that needs to be allocated on each link along the

path as a function of k so that the end-to-end percentile delay remains the same. In section 5,

we calculate the required bandwidth so that the constraints on percentile delay and jitter are

met. In section 6, we extend the analysis to include the third constraint of the packet loss rate.

Finally, the conclusions are presented in section 6.

2. An activity-based simulation model

The tandem queueing network under study consists of N queues, N≥1, as shown in Figure 1.

The tagged arrival process is a video trace that may represent either a single video stream or a

multiplexed set of video streams. Each queue in the tandem queueing network is also fed with

background traffic that is also described by a video trace (one stream or a set of multiplexed

streams). A video trace is a sequence of IP packets identified by the time that the packet arrives

and its length in bits. Each queue i has its own local background traffic that does not propagate

through one or more queues downstream from i after the packets complete their service at the

ith queue. The service time of a packet at each queue i is length/µiwhere “length” is the number

of bits in the packet and µi is the bandwidth allocated to the ith queue. Each packet in the tagged

stream keeps its length throughout the tandem queueing network and all tagged and

background packets are served in a FIFO manner in each queue.

Figure 1: Tandem queueing network under study

In this paper, we present and use an activity-based simulation model as opposed to the

commonly used event-based simulation model. In an event-based simulation model, the system

under study is associated with a set of events that change the state of the system when they

occur. For instance, in a simulation model of a single server M/M/1 queue, an arrival and a

µ1 µ2 µN

Queue 1 Queue 2 Queue NVideo

Traffic

Background

Traffic



5

departure are the two events that change the state of the system. i.e., the number of customers

in the system. An event-based simulation tracks the occurrence of these events and when an

event occurs it takes appropriate action. In an activity-based simulation, the system under study

is viewed as a collection of activities or processes. For instance, a single server queueing

system can be seen as a collection of the following activities: a) inter arriving, b) being served,

and c) waiting for service. In an activity-based design, one mainly concentrates on deriving an

algorithm that determine when activities start or stop. Such an algorithm is not always easy to

obtain, and in view of this, activity-based simulation models are not very common. For further

details, see Perros [17].

Below, we present an algorithm for the activity-based simulation model for calculating

the exact end-to-end delay of each packet in a trace. From this, we can obtain any delay

percentile and the jitter, where the jitter is defined as the average of the difference of the end-

to-end delay of successive packets.

For presentation purposes, we first describe the algorithm for a single queue with no

background traffic. Then, we extend it to the case of a tandem network of N queues, N≥1, with

no background traffic, and finally to the case of a tandem network of N queues, N≥1, with

background traffic at each queue. We assume that each queue has an infinite capacity. We then

augment the algorithm to cater for finite capacity queues and monitor the number of lost

packets to calculate the packet loss rate. This last step is a trivial change to the algorithm, and

it is not described in the paper.

Let a packet p arrives at a queue at time PacketArTimep. Let WaitTimep be the total

wait time of the packet p in that queue. This is composed of the time the packet spends waiting

in the queue and its service time. The time spent waiting in the queue depends upon whether a

packet arrives to find the server empty or not. We will be using the Lindley Equation to

calculate the total wait time of the packet. If the server is idle upon arrival of the packet p, then

the queueing time is 0. If there is one or more packets in front of p, then its queueing time is

the time elapsed from the instance p arrived to the instance that the packet in front of p

completes its service. Hence we have the following two cases for the total waiting time:

 If server is free, then WaitTimep = lengthp/µ

 If server is busy, then WaitTimep = (ServiceCompletionTime – PacktArTimep)+

lengthp/µ

where µ bits/sec is the service rate of the queue and ServiceCompletionTime marks the time

instance when the server becomes free. This variable is updated each time a packet departs the

queue.

The algorithm is summarized as follows, where the subscript p refers to the packet that just

arrived:



6

Algorithm 1:

If server is free,

WaitTimep = lengthp/µ

If server is busy,

WaitTimep = (ServiceCompletionTime – PacketArTimep)+lengthp/µ

ServiceCompletionTime = PacketArTimep + WaitTimep

The algorithm can be easily extended to multiple queues in a tandem network. For this,

we need to make the following changes to the basic algorithm:

1. Each queue i has its associated ServiceCompletionTimei which is the time instance

at which the last packet completed its service in queue i, i=1,2,...,N.

2. The sojourn time of a packet is maintained in a cumulative variable TotalWaitTimep

which is obtained by adding the WaitTimep,i of packet p at each queue i, i=1,2,...,N

as it moves through the tandem network.

3. The PacketArTimep,i of a packet p at queue i is updated as it moves through the

network in a way such that the arrival time at queue i would be equal to the

departure time from queue i – 1, i>1. The PacketArTimep,1 is the original arrival

time of the packet as given in the trace.

The algorithm is as follows for packet p arriving at queue i:

Algorithm 2:

If serveri is free,

WaitTimep,i = lengthp/µi
If serveri is busy,

WaitTimep,i = (ServiceCompletionTimei – PacketArTimep,i)+ lengthp/µi
ServiceCompletionTimei = PacketArTimep,i + WaitTimep,i
TotalWaitTimep = TotalWaitTimep + WaitTimep,i
If i<N

PacketArTimep,i+1 = PacketArTimep,i + WaitTimep,i

In summary, the arrival times of the packets from the trace are used to calculate their

total waiting time in queue 1 and then their departure times from queue 1. Then the arrival time

of each packet to queue 2 is set equal to its departure time from queue 1, and the algorithm

repeats. So, if we want to analyze a tandem queueing network of N queues, then we repeat the

algorithm N times.

An interesting case arises where all queues have the same service rate, that is, μi=µ,

i=1,2,..,N. In this case, the delay incurred by a packet in queue 2 is the same as the delay

incurred in queue 3,4,…,N. That is, if the packet delay in a queue i is di, then the packet delay



7

from queue 2 to queue N is (N-1)d2 and the total delay is d1+(N-1)d2. Hence, we only need to

run the algorithm for the first two queues.

In order to explain this, we consider two packets, p1 and p2, where p1 is in front of p2,

and we examine the situation at queue 2 at the instance when p2 has just finished its service at

queue 1. So p2 and arrives at queue 2 and the following two cases are possible:

1. length of p1 ≤ length of p2: In this case, p2 will find no one in queue 2 and will have

a zero queueing time, i.e., it will immediately be scheduled for service. This is

because by the time p2 completes its service at queue 1, p1 would have already

completed its service at queue 2 and moved on to queue 3. Not only at queue 2, but

p2 will also have a zero waiting time in all the other queues because each time it

reaches a queue p1 would have already moved on to the next queue.

2. length of p1 ≥ length of p2: In this case, p1 is still in service when p2 reaches queue

2, and p2 will have to wait for the remainder of p1’s service, call it r. That is, the

queueing time of p2 at queue 2 is r. This situation repeats when p2 finishes its service

at queue 2 and moves to queue 3, and so on. Packet p2 will wait r in each of the

subsequent queues.

In both cases, the delay that p2 experiences in queue 2 is the same as the delay it experiences

in all the subsequent queues. Hence,

TotalWaitTimep = WaitTimep,1 + (N-1)xWaitTimep,2

Our algorithm for the analysis of the tandem queueing network without background

traffic can be easily extended to include background traffic at each queue in the form of a trace.

The background traffic maybe a single stream or a superposition of several streams.

The algorithm follows the same basic steps as before. The only difference lies in the

selection of the next packet. In the previous algorithm, it was simply the next packet in the

trace. However, now we have to make a decision between the next packet of the trace and the

next packet of the background trace. This can be resolved by simply comparing the arrival time

of the next packet in the tagged trace (PacketArTimep) and the next packet in the background

trace (PacketArTimeBkgrd). The algorithm is as follows:

Algorithm 3

For each queue i, i=1,2,..N do:

If (PacketArTimep < PacketArTimeBkgrd)

If serveri is free,

WaitTimep,i = lengthp/µi
If serveri is busy,

WaitTimep,i = (ServiceCompletionTimei – PacketArTimep,i)+ lengthp/µi



8

ServiceCompletionTimei = PacketArTimep,i + WaitTimep,i
TotalWaitTimep = TotalWaitTimep + WaitTimep,i
If i<N

PacketArTimep,i+1 = PacketArTimep,i + WaitTimep,i

Else If (PacketArTimep > PacketArTimeBkgrd)

If serveri is free,

ServiceCompletionTimei = PacketArTimeBkgrd + lengthBkgrd/µi
If serveri is busy,

ServiceCompletionTimei = ServiceCompletionTimei + lengthBkgrd/µi

The proposed algorithm calculates the exact end-to-end delay of each packet in the tagged

trace, and the packet loss rate for the entire tagged trace. (It also gives exact results for each

background process, but these results are of no interest in this study.) Based on the end-to-end

packet delay of all the packets in the trace, the mean and any given percentile can be easily

computed. In this paper, we use the percentile of the end-to-end delay, as opposed to the mean

end-to-end delay, because it is a more useful statistic for SLAs. Specifically, we calculate the

95th percentile, but any other percentile could also be computed. In addition, the algorithm

gives the exact jitter, defined as the average of the difference of the end-to-end delay of

successive packets. Other metrics of jitter can be easily computed as well.

3. Test Traces

In this paper, we used three different types of traces obtained from Cisco [18]. These traces

represent three different video applications, namely, Telepresence, WebEx, and Jabber. We

note that the QoS requirements for the end-to-end delay, jitter, and packet loss rate, are

stringent for first two applications, and less stringent for Jabber. In this section, we provide

some statistics about these three traces.

Figure 2: Packet length distribution (left), arrival bit rate (right) for the Telepresence trace.

The Cisco Telepresence trace has a lag-1 autocorrelation (of the successive inter-arrival

times) ρ=-0.1383, burstiness (measured by the squared coefficient of variation) c2=4.40 and an

arrival rate λ=7.34 Mbps. The distribution of the packet sizes and the arrival rate (Mbps) are



9

given in Figure 2. We observe that the packet size varied from 60 bytes to 1260 bytes, and the

arrival bit rate is almost constant for the entire trace. The almost constant arrival rate indicates

that there are no scene changes in the video, which is normal for teleconferences. In addition

to the single Telepresence trace, we will also use different sets of multiplexed Telepresence

traces in the paper.

Figure 3: Burstiness (left) and autocorrelation (right) of n multiplexed Telepresence streams

The burstiness c2 and the autocorrelation lag-1 ρ of n, n=1,2,...,30, combined

homogeneous Telepresence streams are shown in Figure 3. We observe that the autocorrelation

increases slightly approaching zero. Also, the burstiness remains constant as the number n of

streams increases. Typically, it tends to decrease as n increases, but in this case there is no

change because the arrival rate of the Telepresence trace is almost constant.

Figure 4: Packet length distribution (left), arrival bit rate (right) for the WebEx trace

The WebEx trace has a lag-1 autocorrelation (of the successive inter-arrival times)

ρ=0.0486, c2=49.5135 and an arrival rate λ=0.309Mbps. The distribution of the packet sizes

and the arrival rate (Mbps) are given in Figure 4. The burstiness c2 and autocorrelation ρ

characteristics of n, n=1,2,...,30, combined homogeneous WebEx streams are shown in Figure

5. We note that the autocorrelation increases slightly and the burstiness decreases as the



10

number of streams increases. The arrival process of the original WebEx trace is highly bursty,

and consequently we see a strong decreases of c2 as the number of streams increases and tends

towards a constant value.

Figure 5: Burstiness (left) and autocorrelation (right) of n multiplexed WebEx streams

Figure 6: Packet length distribution (left), arrival bit rate (right) for Jabber trace

Figure 7: Burstiness (left) and autocorrelation (right) of n multiplexed Jabber streams

Finally, the Cisco Jabber trace has a lag-1 autocorrelation ρ=0.55192, burstiness

c2=28.3756, and an arrival rate λ=0.711 Mbps. The distribution of the packet sizes and the



11

arrival rate (Mbps) are given in Figure 6. We observe that one fourth of the trace is composed

of small signaling packets of size 60 bytes, and the bulk of the traffic is video packets of size

1500 bytes. The burstiness and autocorrelation of n, n=1,2,...,30, homogeneous Jabber streams

are shown in Figure 7.

Using the above traces, we timed the execution of the activity-based simulation model

and compared it to an event-based simulation model that was developed for comparison

purposes. We used a tandem queueing network consisting of 10 queues and we assumed

infinite capacity queues, i.e. no packet loss. Each trace was used as the tagged arrival process,

and the background traffic consisted of n (n=1, 10, 20, 30) multiplexed streams of the same

trace. The execution times (msec) are given in table 1. For each trace, we ran both the activity-

based and the event-based simulation models on an Intel i5 processor. The confidence intervals

were calculated by replicating the simulation, each time starting from a different state. We ran

30 such repetitions that gave us half the width of the confidence interval within 10% of the

estimated 95th percentile of the end-to-end delay. (We note that the same confidence interval

was used in all the results presented in this paper, and since it was negligible it was not given

in the plots.) We observe that the activity-based model is significantly faster than the event-

based simulation, particularly as the number of background traces increases. The activity-based

algorithm is of the order O(NP), where N is the number of queues and P are the number of

packets. Whereas, the event-based simulation is of the order of O(NP2).

Telepresence WebEx Jabber

Backgroun

d traces

Event-

based

Simulatio

n

Activity-

based

Simulatio

n

Event-

based

Simulatio

n

Activity-

based

Simulatio

n

Event-

based

Simulatio

n

Activity-

based

Simulatio

n

1 1234 246 2414 400 1854 432

10 4293 746 7723 1295 3422 892

20 10036 1656 9625 1374 8722 1032

30 18560 2320 13311 1479 11938 1294

Table 1: CPU time (msec) comparisons: Activity-based vs event-based simulation

4. Bandwidth Requirements for Homogeneous Flows

In this section, we consider n identical video streams that follow the same path through an IP

network. That is, they all originate at the same end-point and terminate at the same endpoint.

For such a stream of n videos, we examine the relation between the bandwidth that needs to be

allocated on each link along the path of the flow as a function of n so that the end-to-end

percentile delay remains the same. The results are obtained using the activity-based simulation

model for a 10-node tandem queueing network with no background traffic, for the three traces

described in above. We assumed that all the queues in the tandem queueing network have the

same service rate, since the same bandwidth should be allocated on each link along the path of



12

the video streams. Consequently, we used the simplified algorithm presented in section 2 where

we only have to analyze the first two queues in order to calculate the end-to-end delay. This

activity-based simulation model was embedded in a simple search procedure for calculating

the bandwidth that should be allocated so that a given 95th percentile is satisfied.

Figure 8, Figure 9 and Figure 10 give results for the Telepresence, WebEx, and Jabber

traces respectively for n=1,2,...,30. Each individual trace in the stream was started at a random

time uniformly distributed within a time window, so as to avoid temporal synchronization of

the traces. The graph showing the required bandwidth is labeled “required bandwidth”. In

addition, we plotted the average arrival rate of the multiplexed stream, labeled “average

bandwidth”, and the bandwidth obtained by multiplying the required bandwidth of a single

stream times the number of streams, labeled “no statistical gain bandwidth”. The lattermeasure

is the bandwidth required assuming that no statistical gain is obtained when multiplexing n

streams. Also, the average bandwidth is the least amount of bandwidth required to keep the

system stable and is equal to the average arrival rate, which is a linear function of n.

Figure 8: Bandwidth requirement for a 95th percentile delay of 30 msec (Telepresence)



13

Figure 9: Bandwidth Requirement for Fixed 95th Percentile Delay of 30msec (WebEx)

Figure 10: Bandwidth Requirement for Fixed 95th Percentile Delay of 30msec (Jabber)

We note that in the Telepresence case, the three curves are very close to each other,

because the transmission rate is almost constant due to lack of scene changes. In the WebEx

case, the original trace is very bursty (c2=49.5135) which means that the statistical gain

increases with the number of multiplexed traces, and as a result the required bandwidth and

the no statistical gain graphs diverge. In the Jabber case, the graphs behave similarly to the

WebEx case. Finally, as the end-to-end percentile delay constraint is relaxed, the required

bandwidth graph becomes closer to the average bandwidth graph, as expected (see Anjum [4]

for numerical results).

We observe that in all three traces, the required bandwidth is a linear function of n, the

number of multiplexed streams. This linearity has also been observed by Lone [14]. This can

be explained theoretically using the definition of big-theta Θ that implies asymptotic equality.

[6].

5. Bandwidth Estimation under percentile delay and jitter constraints.



14

In this section we give results on the bandwidth that needs to be allocated on each link along

the path of a video flow so that a given percentile of the end-to-end delay and the jitter are both

satisfied. We define jitter as the average of the difference of the end-to-end delay of successive

packets. In all the experiments, we used the 10-node queueing network with background traffic

at each node. In interest of space, we present the results are obtained for the Telepresence and

WebEx traces only, using algorithm 3 presented in section 2 in conjunction with the simple

search procedure described in the previous section.

We analyzed the 10-node queueing network with background traffic assuming infinite

capacity queues. Figure 11 gives the required bandwidth for the Telepresence trace as a

function of the background traffic obtained bymultiplexing k Telepresence traces, k=1,2,...,30,

so that the 95th percentile delay is equal to 50 msec (this reflects only the total queueing delay,

and it does not include the propagation delay and the jitter.) The graph for the jitter shown in

the same figure, gives the resulting jitter values for the selected bandwidth that satisfied the

percentile delay. Figure 12 gives the required bandwidth for the Telepresence trace as a

function of k, k=1,2,...,30, so that the jitter is equal to 30 msec. The graph for the percentile

delay shown in the same figure, gives the resulting percentile delay values for the selected

bandwidth that satisfied the jitter constraint.

Figure 11: Required bandwidth and jitter values for a 95th percentile delay of 50msec (Telepresence)

Figure 12: Required bandwidth and percentile delay values for jitter of 30msec (Telepresence)



15

Figure 13: Required bandwidth for each constraint (Telepresence)

The bandwidth that satisfies both constraints was calculated iteratively. That is, for a

given k we calculate the end-to-end percentile delay and jitter values assuming an initial small

value for the bandwidth, so that neither constraint is met. Next we increase the bandwidth value

by a fixed step size, and re-calculate the end-to-end percentile delay and jitter. After a few

iterations the less stringent constraint, which in our experiments is always the jitter constraint,

will be met. We store this bandwidth value and keep on iterating until the second constraint,

which is the percentile end-to-end delay, is also satisfied. This is the required bandwidth that

satisfies both constraints.

The results for k=1,2,...,30, obtained are presented in Figure 13. The grey curve

indicates the bandwidth required to satisfy the jitter value of 30 msec, and the black curve

represents the bandwidth required to satisfy the 95th percentile of the end-to-end delay of 50

msec. As can be seen, the required bandwidth for the percentile delay constraint also satisfies

the jitter constraint.

We repeated the same experiments as above for the WebEx trace. The required

bandwidth that satisfies each constraint separately is given in Figure 14. Again we observe that

the required bandwidth for the percentile delay constraint satisfies the jitter constraint, and

hence it is the bandwidth that should be allocated on each link.



16

Figure 14: Required bandwidth for each constraint (WebEx)

In the above numerical results we see that the delay constraint dominates the jitter

constraint for values of 50 msec and 30 msec respectively. This dominance was confirmed for

the two traces for different values of the end-to-end delay and jitter.

In order to confirm the generality of this result, we repeated the above experiment with

different traces. We summarize our findings at the end of section 5.

5.1 Generalization using MAP2 Arrival Process In order to confirm the generality of this

result, we repeated the above experiment with different traces. These traces were generated

from a generalized 2-stage Markovian Arrival Process (MAP2). (As indicated in the

Introduction, the MAP2 has been shown in [3] to be a good model for a video packet flow.)

Using a theoretical model to generate traces permited us to vary the lag-1 autocorrelation ρ and

burstiness c2 of a trace. The traces were generated by first setting the parameters of the MAP2

so that the arrival process corresponds to a given ρ and c2, and then generated the inter-arrival

times of the packets by simulating theMAP2 The required confidence intervals were calculated

using the batch means method. The length of each packet in the trace was obtained by sampling

from the packet-length distribution of the Telepresence trace given in Figure 2. Below, we

briefly review the MAP2 and then give the results.

A MAP is a process that counts transitions of a finite continuous-time Markov chain

with m states. The size m is called the order of the MAP, and determines the dimensions of

matrices D0 and D1:

0 = −11 1221 −22 ⋯ 1… 2⋮ ⋮1 2 ⋱ ⋮… −
 ,1 =  11 1221 22 ⋯ 1… 2⋮ ⋮1 2 ⋱ ⋮… 

 



17

where  = ∑ 1,≠ + ∑ 1 .D0 and D1 represent the transition rates of the MAP
process and define the infinitesimal generator D = D0 + D1, see [15] and [16]. The MAP2

process is uniquely defined by the following six parameters: q12, q21, a11, a12, a21, a22, with q11

= q12+ a11+ a12 and q22 = q21+ a21+ a22. The steady state probability vector π for aMAP2 process

is defined as follows [12]:

The average rate of arrivals in a MAP is called the fundamental rate of the MAP. It is

given by λ=πD1e, where π is the stationary probability vector in the Markov chain (i.e., πD=0

and πe=1). The marginal distribution of the inter-arrival time of the MAP is a phase-type

distribution PH(α,D0), where α=πD1/λ, which is the stationary probability vector. Since the

marginal distribution of the inter-arrival time in a MAP is a PH distribution, its moments,

density and distribution function can be calculated using the standard formulae.

For the interval stationary MAP, we have the following inter-arrival time distribution

function F(x)=Pr{X≤x}:

() = α( − 0(−)11
and the following moments of the inter-arrival time X:

 ≡ {} = ! α(−)(1)1,  = ,, …
From the joint distribution function, we have the autocovariance function ψ[z] (z≥1) of

the inter-arrival times:

[] ≡ [{ − 1}{ − 1}] = α21[1 − ]21
The results are presented in a series of graphs given in Figure 15 for the 10-node tandem

queueing network. For each graph we plot a curve indicating the bandwidth required to satisfy

the jitter value of 30 msec, and a curve indicating the bandwidth required to satisfy the 95th

percentile of the end-to-end delay of 50 msec. Each figure corresponds to a MAP2 with

different autocorrelation lag-1 ρ and c2. The values for ρ and c2 were obtained from the set of

all feasible values for ρ and c2 for a MAP2. The lag-1 autocorrelation ρ for a MAP2 varies

from -0.5 to 0.5. As can be seen, the required bandwidth for the delay constraint completely

dominates that for the jitter constraint and hence it is the bandwidth that satisfies both the

constraints.

(1,1) = 21 + 2121 + 21 + 12 + 12 ,(1,2) = 12 + 1221 + 21 + 12 + 12



18

Figure 15: Required bandwidth for each constraint

We note that the required bandwidth for both percentile delay and jitter constraints,

become steeper as ρ and c2 increase. Also, the required bandwidth for the jitter constraint

becomes closer to the required bandwidth for the percentile delay constraint as the burstiness

increases. This makes sense intuitively as higher level of burstiness translates into larger jitter

values for the traffic. However, the percentile delay constraint of 50 msec still dominates the

jitter constraint of 30 msec.

Obviously if the delay constraint is relaxed, it is possible that the jitter constraint may

dominate. We determined the cross over point, i.e., the point where the jitter constraint of 30

msec starts dominating the percentile delay constraint, for different levels of burstiness.

Specifically, we varied c2 from 0 to 30, kept the jitter constraint fixed at 30 msec, and

determined the value of the percentile delay constraint where it loses its dominance over the

jitter constraint. The results are presented in Figure 16.



19

Figure 16: 95th Percentile Delay values for which jitter constraint of 30msec starts dominating

The results derived from this section can be summarized as below:

1. The dominance of the delay constraint is maintained even when the constraint

is relaxed from the order of milliseconds to the order of a few seconds.

2. Even for high burstiness values, the jitter constraint of 30 msec does not start

dominating until the delay constraint is relaxed beyond 4 sec. Such high values

of delay are quite unrealistic for video based (and audio based) real-time

multimedia services.

3. Hence, we can safely conclude that for bandwidth estimation of video traffic,

the percentile delay bound dominates the jitter bound.

6. Bandwidth estimation under percentile delay, average jitter and packet loss rate

constraints

In this section, we extend our analysis to include the packet loss rate as an additional constraint.

The results were obtained only for the Telepresence and WebEx traces. Algorithm 3 was

modified to account for finite capacity queues. (The modification is trivial and it is not reported

in this paper.) We assume that each queue in the 10-node queueing network has the same finite

capacity and the same service rate.

It is important to note that for finite queues we cannot study the end-to-end delay, jitter

and packet loss independently. Let us consider the packet loss and the percentile delay

constraints together for a finite buffer K. Let us assume that the value of K has been fixed such

that it results to a packet loss of x% for a given bandwidth value of μ. Let us also assume that

for this value of μ, the corresponding value of the end-to-end percentile delay is D. The

interesting question is that if we increase the value of μ to ′, will the corresponding end-to-
end delay value ′ be greater than or less than D? Certainly an increase in bandwidth reduces
the end-to-end delay, so we are tempted to say that ′ < D. However, at the same time, an



20

increase in the bandwidth also reduces the packet loss, which means that more packets are now

on their way from source to destination, which may increase congestion and in turn may

increase the end-to-end delay hence resulting in ′ > D!
Similar arguments can be applied to the jitter and the packet loss constraints. Thus

increasing the bandwidth without fixing the packet loss results in competing conditions for

both increasing and decreasing the end-to-end delay/jitter and the relationship becomes

complex to understand.

To get a clearer picture of how the three constraints affect the bandwidth requirements

of a traffic flow, we classify them to one primary and two secondary constraints. The primary

constraint is the packet loss rate that should be less than 1%. The first secondary constraint is

that the 95th percentile of the end-to-end delay should be less than 50 msec and the second

secondary constraint is that the jitter should be less than 30 msec. In our analysis, the primary

constraint will always be met and we will look at it in isolation and also in combination with

one or both of the secondary constraints.

We focus on the following two questions. First, how does the bandwidth required to

satisfy the primary constraint compare to the bandwidth required to satisfy both the primary

and the two secondary constraints? That is, does satisfying the packet loss rate constraint also

satisfy the end-to-end percentile delay and jitter constraints? Second, which (primary,

secondary) pair of constraints dominate the other in terms of bandwidth requirement? In other

words, does the bandwidth required to satisfy the packet loss and the end-to-end delay

constraints dominate the bandwidth required to satisfy the packet loss and the jitter constraints,

or vice versa?

The iterative scheme was run for three different buffer sizes, 10 MB, 1 MB and 50 KB,

and for k=1,2,...,30. The three buffer sizes result in approximately 10%, 25% and 80% buffer

utilization respectively for the Telepresence trace, and in approximately 8%, 20%, and 80%

buffer utilization respectively for the WebEx trace.



21

Figure 17: Required bandwidth that satisfies the constraints (Telepresence)

Figure 17 gives results for the Telepresence trace. The dotted line indicates the required

bandwidth that satisfies the primary constraint (packet loss rate = 1%), the solid black line

indicates the required bandwidth that satisfies both the primary and the two secondary

constraints. We see that the bandwidth required to satisfy the three constraints dominates the

bandwidth required to satisfy the packet loss rate only, and the difference increases as the

buffer size increases. Similar results were obtained for WebEx trace which we are excluding

in favor of the length of the paper.

Let us shift our focus on the second question, i.e., which (primary, secondary) pair

dominates the other in terms of bandwidth requirement. The results obtained for the WebEx

are given in Figure 18. We notice that for large buffer sizes, the bandwidth required to satisfy

the packet loss and percentile delay constraints dominates the bandwidth required to satisfy the

other pair of constraints, namely, the packet loss and jitter constraints. Similar trends are

observed for the Telepresence trace also which are omitted here. For the case where the buffer

size is 50K, the bandwidth is the same for both pairs of constraints.



22

Figure 18: Required bandwidth that satisfies constraints (WebEx)

Figure 19: 95th Percentile Delay values for which the pair of constraints (packet loss rate=0.01,

jitter=30 msec) starts dominating

We explored the generality of these conclusions by carrying out similar experiments as

in the previous section using the MAP2 process. Figure 19 gives the cross over point at which

the pair of constraints (packet loss rate=0.01, jitter=30 msec) dominates the pair of constraints

(packet loss rate=0.01, end-to-end delay) for different values of c2. We note that this dominance

holds for very high and unrealistic percentile delay values, which is in seconds.

7. Conclusions

In this paper we presented and used a CPU-efficient activity-based simulation design for

calculating the sojourn time of a packet and the packet loss rate in a tandem queueing network

depicting the path of a video flow, which is characterized by a packet trace. Background traffic,

also characterized by a trace, is allowed in the queueing network. From the sojourn time we

can easily calculate any given percentile of the end-to-end delay and the jitter. The required

bandwidth that satisfies all three constraints is easily obtained using a simple search algorithm.



23

In our analysis we used real traces and also generalized our results using traces generated by a

theoretical model of a video arrival process depicted by a Markovian Arrival Process. We

showed that the bandwidth required for n identical video streams that follow the same path

through an IP network, so that that the end-to-end percentile delay remains the same, is a linear

function of n. We also observed experimentally that for infinite-capacity queues the bandwidth

required to satisfy the percentile end-to-end delay constraint also satisfies the jitter constraint.

For finite-capacity queues, the bandwidth required to satisfy both the percentile end-to-end

delay and the packet loss rate constraints also satisfies the pair of jitter and packet loss rate

constraints.

References

[1] Quality of Service Design, Cisco Whitepaper

[2] B. Anjum, H. Perros, X. Mountrouidou, and K. Kontovasilis, “Bandwidth allocation

under end-to-end percentile delay bounds”, International Journal of Network

Management, Wiley, vol. 21, no. 6, pp. 536-547, 2011.

[3] B. Anjum and H. Perros, “An approximation of the percentile of the end-to-end delay for

MAP2 arrivals with an application to video traces”, Networks 2012.

[4] B. Anjum, “Bandwidth allocation under end-to-end percentile delay bounds”, PhD

Thesis, North Carolina State University, 2012.

[5] M. Conti, E. Gregori, and I. Stavrakakis, “Large impact of temporal/spatial correlations

on per-session performance measures: single and multiple node cases”, Performance

Evaluation, vol. 41, pp. 83-116, 2000.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

3rd ed. Massachusetts Institute of Technology, 2009.

[7] S. Dasu, “Class dependent departure process from multiclass phase queues: Exact and

approximate analyses”, European Journal of Operational Research, vol. 108, no. 2, pp.

379-404, 1998.

[8] H. W. Feng and J. F. Chang, “Connection-wise end-to-end performance analysis of

queueing networks with MMPP inputs”, Performance Evaluation Journal, vol. 43, pp.

39–62, 2001.

[9] G. Geleji and H. Perros, “Jitter analysis of an IPP tagged traffic stream in an

{IPP,M}/M/1 queue”, to appear in the Annals of Telecommunications.

[10] G. Geleji and H. Perros, “Jitter analysis of an MMPP-2 tagged stream in a two-class

{MMPP-2, MMPP-2}/M/1 queue and a tandem queuing network consisting of similar

queues”, to appear in Applied Mathematical Modeling.

[11] R. L. Ioannis and I. Stavrakakis, “Traffic shaping of a tagged stream in an ATM network:

approximate end-to-end analysis”, in IEEE INFOCOM, 1995, pp. 162-169.



24

[12] S.H. Kang, Y.H. Kim, D.K. Sung and B.D. Choi, "An application of Markovian arrival

process (MAP) to modeling superposed ATM cell streams," IEEE Transactions on

Communications, vol. 50, no. 4, pp. 633-642, 2002.

[13] J. Kumaran, K. Mitchell, and A. van de Liefvoort, “An analytic model of correlations

induced in a packet stream by background traffic in IP access networks”, in Proceedings

of the 19th International Teletraffic Congress, Beijing, China, 2005, pp. 687-696.

[14] Q. Lone, “Bandwidth allocation for video streams subject to an end-to-end percentile

delay”,MS Thesis, North Carolina State University, 2011.

[15] D. M. Lucantoni, K. S. Meier-Hellstern, and M. F. Neuts, "A single-server queue with

server vacations and a class of non-renewal arrival processes," Advances in Applied

Probability, vol. 22, no. 3, pp. 676-705, 1990.

[16] D. M. Lucantoni, "New results on the single server queue with a batch Markovian arrival

process," Communications in Statistics - Stochastic Models, vol. 7, pp. 1-46, 1991.

[17] H. Perros, Computer simulation techniques - the definitive introduction!,

http://www4.ncsu.edu/~hp//simulation.pdf.

[18] V. Puttasubappa, Private Communication.


