
1

Dynamic VM allocation in a SaaS environment

Brian Bouterse and Harry Perros
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
{bmbouter,hp}@ncsu.edu

Abstract

Given the costs associated with a cloud infrastructure, dynamic scheduling of virtual

machines (VMs) can significantly lower costs while providing an acceptable service level.

We develop a series of forecasting models for predicting demand for VMs in a cloud-based

software used as a SaaS. These models are then used in a periodic-review provision model

which determines how many VMs should be provisioned or de-provision at each inspection

interval. A simple provisioning heuristic model is also proposed, whereby a fixed reserve

capacity of VMs is continuously maintained. We evaluate and compare the performance of

these models for different model parameters using historical data from the Virtual Computing

Laboratory (VCL) at North Carolina State University.

Keywords

Provision of virtual machines (VMs), time-series forecasting models, hidden Markov models

(HMM), Virtual Computing Laboratory (VCL), periodic-review model, capacity planning.



2

1. Introduction

Historically, a service provider owns the entire infrastructure, which is typically dimensioned

for peak demand. Cloud computing provides an alternative way to use an infrastructure

without owning it, where a service provider rents computing resources by the hour. The

cloud infrastructure is provided by a cloud provider. This frees a service provider from the

financial burden of owning equipment, but requires scheduling of resources in order to

satisfy dynamically varying customer demand. In this paper, we address the issue of

provisioning dynamically the capacity of a software offered as a Software-as-a-Service

(SaaS). Capacity is expressed in VMs, where each VM can process N customers (i.e., service

requests) concurrently.

There have been several auto-scaling related studies on the prediction of resources of

a software running on a cloud, expressed in terms of servers, CPU, memory and storage, in

order to satisfy given QoS constraints. Urgaonkar et al. [1] presented a dynamic resource

provisioning of servers for Internet applications that employ a multi-tier architecture using a

queueing network that depicts the flow of customers through a multi-tier system. In addition,

they used reactive provisioning to predict short-term fluctuations. Roy et al. [2] considered

how to auto-scale a given multi-tier software. They first proposed a second-order auto-

regressive moving average (ARMA) model to predict demand, and then they used a queueing

model to determine the required number of machines so that to satisfy a given response time.

D. Minarolli and B. Freisleben [3] studied the problem of predicting the CPU and memory

requirements of a multi-tier application using a support vector machine (SVM) model. Gong

et al. [4] developed a system for dynamic fine-grained CPU and memory allocation to VMs

in order to reduce resource costs and avoid application SLA violations. It achieves this by

predicting CPU demand for VMs using signal processing and a Markov chain model. Hu et

al [5], described an improved version of support vector regression (SVR) algorithm and a

Kalman filter for predicting CPU, memory and storage in a cloud so that to ensure QoS

requirements. Islam et al. [6] used a 3-layer neural network model and linear regression to

predict CPU usage. The models were trained using sampled CPU usage data from an EC2-



3

based application. A prediction interval of 12 minutes was used because the setup time of

VM instances in the cloud was typically around 5−15 minutes. The predicted CPU was used

to auto-scale the software. Sotomayor et al [7], considered capacity planning techniques with

the assumption that demand knowledge is known through a priori reservation of users. Silva

et al. [8] presented a heuristic to optimize the number of machines that should be allocated to

process tasks. The proposed heuristic ensures that the minimum required charged time fits in

a predefined budget, while obtaining the maximum speedup possible with the allocated

machines. For a review on auto-scaling techniques and further references, see Lorido-Botran

et al [9].

Jiang et al [10] obtain an optimum cloud configuration using the genetic algorithm for

a given a workload characteristic and SLAs. Mao and Humphrey [11] report on a

comprehensive study of VM startup time across different cloud providers. The authors show

that boot times vary by operating system, provider, and time of day, but in the worst-cases

VMs become available for use between 450 and 800 seconds after they are requested.

Additionally, they report that VM boot time is independent of the number of virtual machines

requested. Jiang et al [12] proposed a method for determining the capacity of a SaaS

application, expressed in VMs. For this, they used the ensemble learning method to combine

a number of different prediction models in order to estimate the number of arrivals in a unit

time, taken to be a day. Customer departures during a unit time are estimated based on the

life-span distribution of a VM constructed from historical data over a period of time. Finally,

Bouterse and Perros [13] studied several forecasting methods for predicting the required

cloud capacity of a SaaS application, expressed in VMs, in the presence of time-varying

customer demand.

In this paper, we consider the issue of provisioning dynamically the capacity of a

SaaS application, where capacity is expressed in VMs, where each VM can process N

customers concurrently. The paper builds on some preliminary work reported in [13]. A

periodic-review model is described which determines how many VMs should be provisioned

or de-provision in the next inspection interval. For this, the number of arrivals and departures



4

in the next inspection interval have to be estimated. The arrivals are estimated using different

forecasting techniques, and the departures are estimated based on the residual service times

of each customer in service. In addition, a simple provisioning heuristic model is also

proposed, whereby a fixed reserve capacity of VMs is continuously maintained. We

evaluated and compared the performance of these models using historical data from the

Virtual Computing Laboratory (VCL) at North Carolina State University [14]. This is a cloud

computing platform consisting of around 2,500 blades, and it offers computing services to

42,000 students and faculty who use it for teaching and research. We also evaluated and

compared the performance of these models by varying some of the system parameters and in

particular the length of the inspection interval. The contributions of the paper are: a) an

evaluation of different forecasting models, namely, a moving average model, an exponential

moving average model, an autoregressive model, a mixed autoregressive model, and an

autoregressive hidden Markov model; b) a new simple heuristic method that is shown to

perform very well; and c) an analysis of the impact of the length of the inspection period on

the performance of the proposed models.

The paper is organized as follows. In the next section we describe the VM provision

model, and in section 3, we describe how the number of departures in an inspection period is

calculated. The forecasting models and the heuristic method are presented in section 4.

Numerical results and model comparisons are given in section 5. Results from varying the

boot time, shutdown time, and service time are presented in section 6. The case of reducing

the inspection interval is taken up in sections 7 and 8. Finally, the conclusions are given in

section 9.

2. The VM provision model

The SaaS provider requests dynamically VMs from the IaaS provider, who can create an

unlimited number of VMs. Each VM contains N seats, that is it can process N customers (i.e.,

requests) concurrently. VCL uses VMs that have two seats, and in view of this we will also

assume that N = 2. The impact of different values of N is not reported in this paper, but it

follows the same trends as described in Bouterse [17]. VMs are requested by the SaaS



5

provider dynamically as customer demand increases, and they are also released dynamically

as demand decreases. The increases and decreases are in integer numbers of VMs. We

assume an infinite population of customers.

A VM is assumed to have a 300-second boot time from the time it is requested to the

time it becomes available. This assumption is based in the multi-provider boot time study

reported in Mao and Humphrey [11], and it includes configuration in addition to booting. A

shutdown delay is introduced whereby a VM that is to be de-provisioned is first placed in an

inactive state for a fixed period of time and then it is returned back to the IaaS provider.

Inactive VMs are available for use immediately. The shutdown delay is introduced to avoid a

thrashing behavior whereby resources are released and immediately requested, see

Groskinsky et al. [15]. A VM can only be released from active service when all its seats are

empty.

When a new customer arrives, it is assigned immediately to a free seat in a VM. The

customer is forced to join a queue, served on a FIFO basis, if it arrives at a time when no

seats are available. We assume that the software application is controlled by a scheduler

which is activated at fixed inspection intervals. Due to the boot time being set to 300 sec, we

will first assume that the length of the inspection interval is also 300 sec. The inspection

interval will be varied in sections 7 and 8.

Figure 1: The inspection interval [t, t+300]

Let t be the beginning of the inspection interval [t, t+300], and let At and Dt be the

number of arrivals and departures (i.e., service completions) during the interval, as shown in

figure 1. Also, let Wt be the number of customers waiting for service at time t, the beginning

of the inspection interval. At time t the periodic scheduler is activated and it first calculates



6

the number of customer seats Ct needed for the interval [t, t+300], where Ct = Wt + At – Dt.

Where At and Dt are estimated as described below. The number of seats to provision or de-

provision, Ot and Qt respectively, is determined by the current number St of empty seats, the

number of VMs Ot-1 that were ordered in the previous inspection interval [t-300, t] and are

available at time t, and Qt-1 the number of VMs that were taken out of service in the previous

inspection interval [t-300, t] but not decommissioned yet. The previously ordered VMs Ot-1

are put into service at the beginning of the interval [t, t+300], and the Qt-1 VMs taken out of

service at the previous interval are removed all (or partially) if they are not put back into

service. Ot and Qt are given as follows:

 = 
∗∗


, 0 (1)

 = 
∗


, 0 (2)

As discussed above, in order to provision for each inspection interval, the scheduler

has to be able to predict At and Dt. In the following section we discuss how Dt is calculated

and in the subsequent section 4 we present a number of forecasting models that we used to

predict At. Numerical results and comparisons of these models are given in section 5.

Performance is expressed in two metrics, the first of which is the customer waiting

time. This is the time a customer waits in the queue until it is allocated a seat, and it is

expressed in sec. In this paper, we use the 99th percentile of the waiting time as a metric of

the waiting time, and the mean waiting time. Percentiles are preferred SLA metrics, as they

reflect better the variability of a performance measure than the mean. The percentiles of the

waiting time are measured on hourly, daily, and weekly timescales since different timescales

are used in a service level agreement. The second performance metric is the VM utilization.

Utilization is defined as the proportion of time that the seats of a VM are in use. Utilization is

summarized as an average over the period of the evaluation.

The forecasting models used to predict the number of arrivals At in the next

inspection interval [t, t+300], are trained and tested using VCL data for an entire year. All



7

service times longer than or equal to 8 hours were removed resulting to a total of 175,554

requests for service, i.e. customers. Figure 2 shows the number of arrivals per 300 sec for the

entire year starting on July 1, 2008 and the histogram of the service times (sec). The models

were trained on the first six months and the testing was done on the remaining six months.

This division does not introduce any seasonal biases since both the training and evaluation

periods include an equal quantity of active semesters, summer semesters, exams, and break

periods. The VM provision model with the forecasting models used to predict the number of

arrivals At were implemented in a simulation, which was used to obtain the waiting time and

utilization performance metrics.

a) Number of requests per 300 sec b) Service time histogram (sec)

Figure 2: VCL data

3. Estimating the Departure Process Dt.

We estimate the average number of departures during an inspection period by determining

the probability that each customer in service will depart during the inspection period. For

this, we need to know the service time distribution of the customers. To adhere to the

methodology of the training and testing sets, we only used the training data to construct a

histogram of the VCL service times. In addition, we also fitted a theoretical distribution to

this histogram which allow us to modify its parameters in order to obtain service time

distributions other than that of VCL. After experimenting with a variety of distributions, we



8

selected a Gamma distribution with parameters α=1.1401, β=4158.3 (χ2 = 42838.8, with a p-

value of 2.774E-9037).

To estimate the number of departures, Dt, during an inspection interval [t, t+300], we

sum the probability that each customer in service will depart within the next 300 seconds,

given that it was in service at time t. This probability is equal to F(s + 300) - F(s), where F(s)

is the CDF of the service time distribution and s is the amount of service the customer has

received until time t. This technique is computationally intensive, since it has to be done

every 300 sec of simulation time for all the customers in service, and in view of this, the

quantity F(s + 300) - F(s) was pre-computed for discrete values of s.

Below, we only give the simulation results for the Gamma distribution, since they are almost

identical to those obtained using the actual histogram.

4. Predicting the number of arrivals At

In this section, we present five different forecasting models for predicting the number of

arrivals At during an inspection interval [t, t+300]. These are: a moving average model, an

exponential moving average model, an autoregressive model, a mixed autoregressive model,

and an autoregressive hidden Markov model. We also present a simple provisioning heuristic

model whereby a fixed reserve capacity of VMs is continuously maintained. Each model was

trained using the training data, i.e., the first six months of the VCL data. The model was then

used in the VM provision model, described above, which was simulated using the test data,

i.e., the second six months of the VCL data. We note that an estimate of At is denoted as Ât.

We now proceed to present the parameters of the forecasting models.

a. The pre-known demand model.

In addition to the forecasting models, we also ran the VM provision model using the actual

trace of the VCL arrivals and corresponding service times. We refer to this model as the pre-

known demand model. This model operates with Ât = At, and is used as a base line model for

comparison with the other models. The results of simulating the VM provision model with

the actual VCL trace are given in table 4.



9

b. Moving average model

The moving average model is defined as follows: Ât = (At-1 + At-2 + … + At-k) / k, where Ât is

the predicted number of arrivals in the [t, t+300] inspection interval. The model was trained

using the training data set by varying k and keeping track of the SSE, the sum of the squared

differences of the number of actual arrivals minus the estimated one. The lowest SSE was

observed when k = 12. The results of simulating the VM provision model with the moving

average model are given in table 4.

c. Exponential moving average model

The exponential moving average model is as follows:

Â = 0

Â =  + 1−  Â = Â +   − Â ,  > 0.

where At-1 is the actual number of customers who arrived during the [t - 300, t) interval, and

Ât is the predicted number of arrivals during the period [t, t + 300). The model was trained

using the training data, and the value of α = 0.13 was selected since it minimizes SSE. The

results of simulating the VM provision model with the exponential moving average model

are given in table 4.

d. Autoregressive model

A q order autoregressive model with parameters c, {φ1,φ2,…,φq}, and εt is defined as follows:

Ât =  +   +







where Ât is the estimated value for the [t, t+300] interval, and εt ~ N(0, σ
2). Using the Yule-

Walker method on the training set, an AR(2), i.e. q=2, with c=0 was obtained with

parameters φ1=0.4258, φ2=0.3435, and σ
2=3.372. Based on experimentation, increasing the

modeling order beyond 2 yields only marginal improvements. The results of simulating the

VM provision model with the autoregressive model are given in table 4.



10

Time Period C φ1 φ2 σ
2

Fall/Spring Classes 0 0.4089 0.3241 4.967

Summer Sessions 0 0.2523 0.1747 0.7864

Exams 0 0.2549 0.2411 1.18

Table 1: c, φ1, φ2, and σ
2 values for three different calendar periods

e. Mixed autoregressive model

A mixed autoregressive model is used whereby three autoregressive models are trained

corresponding to a) Fall and Spring semesters, b) Summer sessions 1 and 2, and c) exam

calendar periods. These three models together are referred to as the mixed autoregressive

model and are used according to the academic calendar. Three autoregressive models of

order 2 have their parameters optimized using the Yule-Walker method for each of these

three calendar periods using the training data. The model parameters c, φ1, φ2, and σ
2 for each

period are given in table 1. The results of simulating the VM provision model with the mixed

autoregressive model are given in table 4.

i j pi,j p-value

0 0 0.9583615 0

0 1 0.0001809 0.585

0 2 0.0414576 0

1 0 0.0117296 0

1 1 0.7786373 0

1 2 0.2096332 0

2 0 0.0421590 0

2 1 0.2244591 0

2 2 0.7333819 0

Table 2: Branching probabilities pi,j with p-values.



11

f. Autoregressive hidden Markov model

An autoregressive hidden Markov model AR(q)-HMM(M) was also developed to predict the

number of arrivals during each 300-second interval, where q is the order of the

autoregressive model and M is the number of hidden states. Estimation of the model

parameters of a given AR(q)-HMM(M) was done using Grocer [16], which estimates

parameters using a maximum likelihood method based on a Kittagawa-Hamilton filter. This

estimation requires the user to pre-select q and M, and training of the remaining model

parameters is done on the first six months of data.

A variety of models with different q and M values were tested and the selection of the best

model was based on the p-values of the estimated parameters, which indicates their statistical

significance, and the SSE values. For brevity, an in-depth presentation of each model is not

given, but two important observations are noted. First, using 5 hidden states revealed that

several states had autoregressive coefficients which were very similar to each other, for the

same autoregressive order q. Consequently, we settled for M=3. Second, given M=3, using

too small or too large of a value of q increased the SSE; selecting q = 5 produces a model that

demonstrates less prediction error than models with other values for q. These two

observations together indicated that an AR(5)-HMM(3) model was the best. Tables 2 and 3

give the estimated parameters for this model.

State 1 State 2 State 3

Parameter Coefficient p-value Coefficient p-value Coefficient p-value

AR(-1) 0.1863004 0 0.4107128 0 -0.3574271 0

AR(-2) 0.1273634 0 -3.307E-11 0.8764984 0.0491597 0

AR(-3) 0.1388058 0 3.572E-11 0.8642294 0.0518409 0

AR(-4) 0.1197142 0 2.503E-12 0.9904083 0.0574256 0

AR(-5) 0.1217175 0 -3.806E-11 0.8541158 0.0702153 0

Constant 1.2427012 0 2.266E-11 0.8761246 0.9607062 0

Error
variance

5.0576163 0 2.221E-16 0.9999966 0.4464271 0



12

Table 3: AR coefficients and p-values for each state

We note that the p-values of all estimated parameters in table 3 are zero, except for

p01 whose values is zero for all practical purposes. Likewise table 4 has all zero p-values

except for state 2, where non-zero p-values have corresponding coefficients that are

effectively zero anyway. The state 1 autoregressive model has all positive coefficients and a

constant of 1.24 and it can be seen as a growth state. The state 2 autoregressive model is for

all practical purposes a lag-1 model with a coefficient of 0.4 and zero constant and error

variance, and it can be seen as a state of declining arrivals. The state 3 autoregressive model

has a negative dependency on the lag-1 value, a weak positive dependency on the other lags

and a constant close to 1, and it can be seen as a state of random fluctuation of arrivals.

Finally, we note that the steady-state probability of being in state 1, 2, and 3 is 0.3918647,

0.3063385, 0.3017968, respectively. That is, the system spends about one third of the time is

each state, indicating a strong influence of the states on the model.

The trained AR(5)-HMM(3) model was used in the provision model which, as in the

above models, was simulated using the test data. For this we needed to know the state of the

HMM at the first 300-second period of the test data, which can be obtained by applying

Viterbi’s algorithm on the training data. For simplicity, we assumed that the initial state was

state 1. (Through experimentation, the starting state does not have any impact on the results

due to the long estimation period.) The results of simulating the VM provision model with

the AR(5)-HMM(3) autoregressive model are given in table 4.

g. Fixed reserve capacity model

In addition to the above models, we have also used a simple heuristic model. We recall that

at time t, we estimate the required number of seats Ct = Wt + At – Dt and then we either order

Ot or transition Qt VMs out-of-service per expressions (1) and (2) respectively. The idea

behind this model is that the number of virtual machines is scaled such that R unused virtual

machines will be available. This is equivalent to always planning for R arrivals and is

effectively Ât = R which causes R seats to be predicted as needed for all t ≥ 0. This model



13

leaves headroom for new customers by assuming R customers will arrive in each interval.

We refer to this model as the fixed reserve capacity model.

The best value was obtained by simulating the provision model with the fixed reserve

capacity heuristic using the training data and letting R take values in the integer set [1, 50].

The lowest SSE was observed when R = 2. The results of simulating the VM provision model

with the fixed reserve capacity model are shown in table 4.

5. Results and model comparisons

The simulation results from all of the above models are summarized in table 4. The results

given are: the average utilization of the VMs computed over the six-month period, and the

99th percentile of hourly, daily and weekly waiting time of a customer. The waiting time is

the time elapsing from the instance a customer arrives at the SaaS system to the instance it is

allocated to a seat. The hourly 99th percentile is computed by first computing the 99th

percentile of all the waiting times for each hour, and then take the average of all these 99th

percentiles. The other percentiles are similarly computed. The average waiting time, though

not a performance metric of interest, is also given so that it can be contrasted with the

percentile results.

Model
Average

utilization

Waiting time

99th percentile

per hour

Waiting time

99th percentile

per day

Waiting time

99th percentile

per week

Average

waiting time

Pre-known
demand

0.8662 164.95 43.12 24.81 15.07

Moving
Average

0.8641 380.21 75.08 50.71 33.89

Exponential
moving average

0.8623 195.13 74.22 48.88 32.74

Auto-
Regressive

0.8650 447.26 101.53 67.07 35.34

Mixed
autoregressive

0.8676 428.63 105.23 69.80 38.84

AR(5)-
HMM(3)

0.8643 257.21 86.96 59.51 47.39

Fixed reserve
capacity

0.8599 179.78 74.47 55.29 43.59

Table 4: Summary of results



14

The performance of the provision models presented above is measured in terms of

waiting time and utilization. We note that shortening the timescale causes the 99th waiting

time percentile to increase. This means that we need to allocate more resources if we want to

satisfy a given 99th percentile constraint on shorter timescales. In the case of the hourly

timescale, there are typically a few observations within an hour, which means that the 99th

percentile is most likely the highest observed value. This is not the case for the larger

timescales, where typically there are a sufficient number of observations and therefore the

99th percentile is not the largest observed value.

We note that the utilization across all models is about the same. (This is due to the

fact that all models for predicting At have approximately the same mean.) Consequently, we

can compare the models using only the waiting time percentiles. In this case, depending on

the time scales we have different winners. Specifically, the fixed reserve capacity model

clearly outperforms all models for the hourly 99th percentile with the exponential moving

average model coming second. The exponential moving average and the fixed reserve

capacity models give the best results for the daily 99th percentile, and for the weekly 99th

percentile, the exponential moving average model performs the best.

A 1% drop in the utilization calculated over the evaluation period corresponds to

about 700 VM hours. The cost of renting these additional VM hours with current level prices

is not significant, but it may be significant at the aggregate level if the service provider offers

other SaaS applications. In view of this, we carried out a comparison using both the waiting

time and utilization metrics. In the absence of additional subjective preferences of the service

provider regarding the relative importance of these two metrics, we compare these models

using a Pareto front, as shown in figure 3. The pre-known demand model is indicated in blue

because it is not a candidate model for evaluation. The Pareto front is drawn in green and the

Pareto optimal models are colored in green as well while Pareto sub-optimal models are

colored in red. We see that for the hourly 99th percentile of the waiting time, the Pareto

optimal models are the fixed reserve capacity and mixed autoregressive models. For the daily

99th percentile of the waiting time, the exponential moving average, the fixed reserve



15

capacity, and mixed autoregressive models are Pareto optimal. Finally, for the weekly 99th

percentile of the waiting time, the fixed reserve capacity and mixed autoregressive models

are Pareto optimal. In general, the reserve capacity model is Pareto optimal for all the three

timescales.

a) Average waiting time vs utilization b) Percentile waiting time per hour vs utilization

c) Percentile waiting time per day vs utilization d) Percentile waiting time per week vs utilization

Figure 3: Pareto optimality for all models

6. Varying the boot time, shutdown time, and service time



16

We first examine the impact of varying the boot and shutdown times on the waiting time and

utilization, assuming that the rest of the model parameters remain the same. Previously, we

assumed that these two times are equal to 300 sec, which is also the length of the inspection

interval. We allowed the boot time to take the values {120, 300, 480} sec and the shutdown

time the values {0, 120, 300, 480} sec. A shutdown time of 0 causes a VM to be deleted

immediately if it is determined that it is no longer needed. A boot time of 0 represents the

case where a requested VM becomes available for service immediately. VMs take time to

become ready so a boot time value of 0 is unrealistic. (We are not considering the case,

where a system is over-provisioned with a large number of VMs so that there is always a free

seat available whenever a customer arrives. Such a system will have a zero waiting time, but

a very low utilization.)

In the interest of space, we only present results for the 99th percentile of the waiting

time per hour for all the forecasting models and the fixed reserve capacity model. The

remaining metrics for the waiting time follow the same pattern. The average utilization did

not vary much, and therefore it is not given here. These results are summarized in figure 4.

Specifically, in figure 4a we vary the shutdown time and keep the boot time fixed to 300 sec,

and in figure 4b, we vary the boot time and keep the shutdown time fixed to 300 sec.

a) Varying shutdown time, boot time = 300 sec b) Varying boot time, shutdown time = 300 sec



17

Figure 4: Varying boot time and shutdown delay for all models

We first note that the fixed reserve capacity and the exponential moving average

models produce the lowest 99th percentile waiting times, which is consistent with the results

in the previous section. We also note that there is a stepwise performance based on the boot

time or the shutdown time falling within the regions, (0, 300], and (300, 600], or the

shutdown time being 0. The value 0 is only used by the shutdown time and it represents its

own performance region where VMs are deleted immediately. The stepwise performance

behavior is due to the fact that the scheduler is activated every 300 sec.

A boot time change that stays within the range (0, 300] or (300, 600] causes no

change in the waiting time metrics because the VM is placed into service when the scheduler

is activated at the beginning of the next inspection interval. For example, a VM with a boot

time of 120 sec is put into service 300 sec after it is requested, at the beginning of the next

inspection interval. Consequently, any variations within the range (0, 300] will not affect the

waiting time metrics. However, increasing the boot time from within the range (0, 300] to

(300, 600] and thereafter, significantly increases the waiting time metrics. The same holds for

the shutdown time. For example, a shutdown time of 200 sec causes the VM to be deleted at

300 sec after it is requested due to the fact that VMs can only be de-provisioned when the

scheduler is activated at the beginning of the next inspection interval. On the other hand,

increasing the shutdown time so that it changes range, for instance from 0 to (0, 300], or from

(0, 300] to (300, 600] and thereafter, will increase the waiting time, but experimentation

shows that this increase is very small.

We now examine the impact of reducing the customer service time on the waiting

time and utilization. The mean service time considered so far was taken from the VCL data

and it is 4957 sec or 1.377 hours, which is significantly larger than the periodic review time

of 300 sec. Here, we consider the opposite case where the mean service time is smaller than

the 300 sec inspection period. Specifically, we assume that the service times follow a Gamma

distribution with α = 24 and β = 5 that correspond to a mean service time of 120 sec and a

variance of 600 sec. The mean of 120 sec ensures that most of the customers will get served



18

within a single inspection period, and the variance of 600 allows for some variation of this

scenario. The remaining model parameters and arrival process are the same as before.

Model
Average

utilization

Waiting time

99th percentile

per hour

Waiting time

99th percentile

per day

Waiting time

99th percentile

per week

Average

waiting

time

Moving
Average

0.2195 494.21 67.05 30.73 8.4

Exponential
Moving Average

0.2174 70.94 42.37 20.19 7.04

Auto-
Regressive

0.2321 564.21 285.23 167 31.4

Mixed
autoregressive

0.2435 555.21 281.86 162.25 31.12

AR(5)-
HMM(3)

0.2169 430.47 117.49 79.05 30.01

Fixed reserve
Capacity

0.1979 58.86 29.83 16.71 11.3

Table 5: Summary of the results for the reduced service time

A summary of the results is given in table 5. We note that the utilization for all

models is significantly lower than the utilization reported in table 4. This is because

customers complete their service within a periodic review interval thus giving rise to more

idle VMs which cannot be taken out of service until the end of the periodic review interval.

The fixed reserve capacity model is the best overall performer with the exponential moving

average model being very close. For these two models, we observe a reduction in the

percentile and mean waiting times relative to the waiting times of table 4. The remaining

models which include the moving average, autoregressive, mixed-autoregressive, and AR(5)-

HMM(3) all show a reduction in mean waiting time relative to table 4, but they each have

higher percentile waiting time for all timescales.

Similar results (not reported in the paper in the interest of space) were obtained for

other reduced services. Low volume traffic environments and reduced service times coupled

with the fact that some of the forecasting models take into account only recent information,

cause the increases in percentile waiting times of table 5 for the moving average,

autoregressive, mixed-autoregressive, and AR(5)-HMM(3) relative to table 4. The moving



19

average model, autoregressive model, and mixed autoregressive model each predict Ât from

two previous actual arrival observations At-1 and At-2, which is 10 minutes of wall clock time.

The AR(5)-HMM(3) estimates Ât from five previous, actual arrival observations At-1, At-2, At-

3, At-4, At-5 , which is 25 minutes of wall clock time. The percent of time the test data has

periods where no arrivals occur in 10 or 25 minutes is 5.6% and 1.6% respectively, which

causes Ât to be 0 during those portions of time. The reduced service times cause the

probability P(Wt = 0) to be effectively 1 as customers depart quickly allowing new arrivals to

be served. With Ât = 0 and Wt = 0 the autoregressive, mixed-autoregressive, AR(5)-HMM(3)

and moving average models scale down the number of VMs to 0. A customer that arrives

when there are 0 VMs, has to wait up to 300 seconds for the next periodic review time and

then waits another 300 seconds for the VMs to become available for a total worst case

waiting time of 600 seconds. This gives rise to extreme values that influence the 99th

percentile. As the timescale increases, the 99th percentile decreases for the reasons given in

section 4. In the case of the original service times reported in table 4, the probability P(Wt >

0) is larger than in the case of reduced service times due to seats not becoming available

through customer departures. This results in the overall cluster size being larger and thus

reducing the waiting time percentiles through the availability of more resources.

On the other hand, the exponential moving average and the fixed reserve capacity

model produce positive estimates of Ât, i.e. Ât > 0, during low volume traffic conditions,

which causes a decrease in the waiting time in table 5 relative to table 4. This is because the

exponential moving average model incorporates all previous At values with exponentially

decreasing coefficients for older observations. This creates a hysteresis whereby low volume

traffic conditions still predict Ât > 0 due to medium or high volume traffic conditions having

been seen before. The fixed reserve capacity model always predicts Ât = R in all types of

traffic environments. Non zero Ât predictions during low volume traffic environments

maintain VMs provisioned, which allow waiting times to decrease when service times are

reduced.



20

7. Decreasing the inspection interval

As shown in table 4, the case of the pre-known demand does not produce a zero waiting time

and 100% utilization, due to the periodic ordering and placement into or removal from

service of VMs every 300 sec. In this section, we examine the case of reducing the inspection

interval such that the scheduler can run multiple times within a 300 second boot time. In

order to avoid partial inspection intervals within the 300 sec boot time, the inspection interval

d was set to d = 150, 100, 75, 60, 50, 30, 25, 30, 15, 12, and 10.

Resources requested at time t will not become available until time t + 300. In view of

this, even though the inspection interval is shorter than 300 seconds, planning must occur for

the entire interval [t, t+300), that is over n successive inspection intervals of length d, where

n = 300 / d. This approach is referred to as the n-step prediction. Let Ât, Ât+d, … , Ât+(n-1)d be

the predicted number of arrivals in each of the n inspection intervals obtained using one of

the arrival prediction models, where t is the beginning of the first inspection interval. Then,

the predicted number of arrivals for the entire 300-second period is the sum Ât + Ât+d + … +

Ât+(n-1)d . Based on the total predicted number of arrivals, we estimate the number of required

seats for the entire 300-second period, which is then used to calculate Ot and Qt given by (1)

and (2). Because of the short inspection interval, ordered VMs over several previous

inspection intervals may not have arrived yet. In view of this, Ot-1 in expressions (1) and (2)

is adjusted to indicate all the ordered, but not yet delivered, VMs. Likewise, Qt-1 is altered to

indicate all VMs that have been taken out of service but are not deleted yet.

Time t is moved forward by d to the beginning of the next inspection interval, and the

same analysis is carried out again. That is, we predict the number of arrivals for the next n

inspection intervals starting from t+d, which now extends to include the new inspection

interval [t+(n-1)d, t+nd], and then calculate Ot and Qt as described above. This process

continues in this manner for the entire length of the simulation.

Because of this n-step prediction, the arrival models have to be re-trained so that to



21

predict the number of arrivals for each inspection interval d = 150, 100, 75, 60, 50, 30, 25,

20, 15, 12, 10 sec. As described in section 4, model parameter training is done using the first

six-months of the data, and the simulation results are based on the second six months of the

data. During training, the n-step SSE is computed as the squared difference of the ceiling of

the n-step prediction and the corresponding number of the actual arrivals over the same n

inspection intervals. (The ceiling is used in order to closely approximate the Qt and Ot

expressions used by the scheduler, which both take the ceiling given that partial VMs cannot

be ordered.)

Inspection

interval

(sec)
k

Average

utilization

Waiting time

99th percentile

per hour

Waiting time

99th percentile

per day

Waiting time

99th percentile

per week

Average

waiting time

300 12 0.8640 380.21 75.08 50.70 33.89

150 37 0.8689 222.27 58.15 42.39 26.44

100 49 0.8695 249.41 51.29 36.74 23.15

75 50 0.8698 316.21 51.59 32.57 20.58

60 50 0.8690 318.00 47.93 31.28 19.02

50 50 0.8692 312.63 48.36 30.11 17.97

30 50 0.8667 315.21 53.09 29.81 15.47

25 50 0.8663 310.00 52.53 31.85 14.76

20 50 0.8654 309.00 52.14 34.36 13.87

15 50 0.8631 307.00 55.11 39.23 13.09

12 50 0.8600 306.00 58.26 42.68 11.99

10 50 0.8569 305.00 65.36 44.74 11.25

Table 6: Summary of results - n-step moving average



22

8. Numerical results and model comparison

In this section we provide numerical results and model comparisons for a subset of the

models, specifically, the moving average model, the exponential moving average model, the

autoregressive model, and the fixed reserve capacity models. The mixed autoregressive

model is not considered, as it is very similar to the autoregressive model, and the AR(5)-

HMM(3) consistently showed poor performance relative to other models.

We note that in the results given, we have included the case of d = 300 for

comparison purposes. Also, the average waiting time, although not a performance metric of

interest, is also given for comparison purposes. As in section 5, we use Pareto curves to

compare all the models. (In the interest of space we do not show the Pareto curves for each

individual model.)

a. n-step moving average model

For each inspection interval d, the k value that minimizes the n-step SSE is first determined,

and then the VM provision model is simulated using the test data. The results are given in

table 6. Different inspection intervals with different k values are more Pareto efficient for

different waiting time percentiles. For instance, the 150-second inspection interval with k =

37 minimizes waiting time for the 99th percentile per hour. Likewise, the 60-second

inspection interval with k = 50 minimizes waiting time for the 99th percentile per day.

Inspection

interval

(sec)

α Average

utilization

Waiting time

99th percentile

per hour

Waiting time

99th percentile

per day

Waiting time

99th percentile

per week

Average

waiting time

300 0.13 0.8623 195.13 74.22 48.88 32.74

150 0.01 0.8709 172.46 68.87 47.86 33.32

100 0.01 0.8718 153.98 55.98 40.93 28.31

75 0.01 0.8708 134.10 50.65 35.72 24.76



23

60 0.01 0.8703 131.69 47.12 33.69 22.82

50 0.01 0.8702 124.81 46.06 32.46 21.57

30 0.01 0.8691 113.76 42.01 28.50 18.12

25 0.01 0.8685 110.20 43.02 27.18 17.14

20 0.01 0.8679 107.81 40.93 25.82 16.11

15 0.01 0.8666 112.92 39.12 25.43 14.92

12 0.01 0.8658 130.32 36.66 24.48 14.15

10 0.01 0.8654 141.81 39.24 23.74 13.51

Table 7: Summary of results - n-step exponential moving average

b. n-step exponential moving average model

For each inspection interval d, the value of α, where 0.01 ≤ α ≤ 1, that minimizes the n-step

SSE is first determined. The optimum value of α along with the simulation results are given

in table 7. For the average case and all percentile timescales explored, a Pareto frontier is

formed from periodic review times where 20 ≤ d ≤ 100. Periodic review times of d < 20 are

on the Pareto frontier for select percentile timescales. The periodic review times d ≥ 150 sec

is suboptimal. The waiting time percentiles show a Pareto front which is expanded but not

outperformed with each decrease in periodic review times. Exploring smaller periodic review

times is not expected to yield performance that is more Pareto efficient than the review times

and α values already explored.

Insp.

intervl

(sec)

φ1 φ2

Average

utilizati

on

Waiting time

99th percentile

per hour

Waiting time

99th percentile

per day

Waiting time

99th percentile

per week

Average

waiting

time

300 0.3345 0.4095 0.8661 455.47 101.53 66.82 36.40

150 0.2968 0.3311 0.8661 370.21 89.13 62.49 29.73

100 0.2573 0.2863 0.8748 350.42 83.87 60.07 31.40

75 0.2243 0.2555 0.8789 341.05 82.39 58.22 35.54

60 0.2053 0.2269 0.8814 326.00 79.65 57.52 39.33

50 0.1856 0.2068 0.8836 321.21 82.53 60.95 43.03

30 0.1406 0.1507 0.8874 317.00 78.85 61.01 51.91



24

25 0.124 0.1326 0.8903 311.21 80.05 62.58 54.23

20 0.1059 0.1142 0.8903 310.00 82.78 63.93 56.89

15 0.0848 0.0932 0.8918 307.00 88.52 66.04 58.78

12 0.0708 0.0809 0.8931 306.00 90.42 67.73 59.94

10 0.0618 0.0696 0.8922 305.00 92.09 67.08 59.99

Table 8: Summary of results - n-step autoregressive model

c. n-step autoregressive model

The values for φ1 and φ2 are obtained as before for each inspection interval. Table 8 gives a

summary of the results for the n-step autoregressive model. We first observe that φ1 and φ2

decrease as the inspection interval decreases. This is because as the expected number of

arrivals per inspection interval also decreases, which causes the coefficients to decrease as

well. The Pareto front for each 99th percentile includes most points where d ≤ 60. As above,

the trend suggests that smaller inspection intervals may extend the Pareto frontier, but they

will not produce performance that is more Pareto optimal than the existing points.

d. n-step fixed reserve capacity model

For each inspection interval, the R value that minimizes the n-step SSE is first determined,

and then the simulation is run against the second six months. The results are summarized on

table 9.

Insp.

intervl

(sec)

R
Average

Utilization

Waiting time

99th percentile

per hour

Waiting time

99th percentile

per day

Waiting time

99th percentile

per week

Average

waiting time

300 2 0.8599 179.78 74.47 55.29 43.59

150 0.5 0.8790 187.58 79.37 64.46 52.38

100 0.15 0.8845 195.78 85.24 69.70 60.59

75 0.1 0.8852 193.27 83.22 69.87 59.73

60 0.05 0.8867 195.55 84.87 72.52 62.43

50 0.05 0.8862 188.09 81.47 68.27 59.84

30 0.05 0.8852 168.04 74.06 59.95 53.00

25 0.05 0.8843 166.20 72.27 57.97 49.72

20 0.05 0.8838 155.34 68.23 54.71 46.03

15 0.05 0.8820 142.85 67.85 51.26 41.15



25

12 0.05 0.8740 129.38 58.74 45.90 36.20

10 0.05 0.8703 120.27 53.03 40.00 32.13

Table 9: Summary of results - n-step reserve capacity model

For all 99th percentile timescales, the Pareto frontier is comprised of inspection intervals with

d ≤ 60. As in the above models, further reduction of the inspection intervals will likely add

points to the Pareto frontier in the area of lower utilization with lower waiting times, but

these new points are not expected to outperform the existing Pareto frontier. Finally, similar

to the parameters of the autoregressive model, as the inspection interval decreases, the

optimized values of R also decrease. As d decreases, the traffic within 300 seconds is spread

over more periodic review intervals, which causes the overall traffic per interval to decrease

As such, it is expected that R decrease as n is increases.

a) Average waiting time vs utilization b) Percentile waiting time per hour vs utilization



26

c) Percentile waiting time per day vs utilization d) Percentile waiting time per week vs utilization

Figure 5: Pareto optimality for the n-step models

e. Comparison of the n-step model

Figure 5 shows the Pareto optimality for the n-step models for all the reported inspection

intervals. We note that for the percentile timescales the exponential moving average n-step

model and the reserve capacity n-step model occupy almost the entire Pareto frontier and

therefore are the highest performers. This is consistent with the conclusions from the 1-step

model comparison in section 6. For the average waiting time case in figure 4a, the

exponential moving average, moving average, and autoregressive n-step models define the

Pareto frontier.

9. Conclusions

In this paper, we described a periodic-review model for provisioning VMs for a cloud-based

software used as a SaaS, where the arrival of customers varies over time. The provision

model requires knowledge of the number of arrivals within each inspection period, and for

this we developed and compared the following forecasting models: a moving average model,

an exponential moving average model, an autoregressive model, a mixed autoregressive

model, and an autoregressive hidden Markov model. In addition, we have also proposed the

fixed reserve capacity model, a simple heuristic whereby at the beginning of each inspection



27

interval, the required number of available VMs is adjusted up or down so that R seats are

always available. We trained and compared these models for a variety of system parameters

using data from the Virtual Computing Laboratory (VCL) at North Carolina State University,

a cloud-based computing service to 42,000 students and faculty who use it to run applications

for teaching and research. We concluded that the exponential moving average and the fixed

reserve capacity models are generally the highest performing. We also conclude that

evaluating system capacity more regularly produces generally higher performance but

eventually performance gains stop with further reduction in periodic review interval times.

The applicability of the models was tested by varying the main parameters of a SaaS

environment, namely, the service time, boot time and shutdown time. Obviously, it is not

clear how these models will perform given a different demand trace. However, it is expected

that the methodology developed in this paper should be applicable even if the conclusions

maybe different.

References

[1] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile dynamic provisioning of
multi-tier internet applications,” ACM Trans. Auton. Adapt. Syst., vol. 3, no. 1, 2008.

[2] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud using predictive models
for workload forecasting,” in Proceedings of the 2011 IEEE 4th International Conference on
Cloud Computing, Washington, DC, USA, 2011, pp. 500–507

[3] D. Minarolli and B. Freisleben, “Cross-correlation prediction of resource demand for virtual
machine resource allocation in clouds”, Computational Intelligence, Communication Systems
and Networks (CICSyN), 2014 Sixth International Conference, 27-29 May 2014

[4] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling for cloud systems”,
International Conference on Network and Service Management, pp 9–16. IEEE Press, 2010.

[5] R. Hu, J. Jiang, G. Liu, and L. Wang, “KSwSVR: A new load forecasting method for efficient
resources provisioning in cloud”, IEEE International Conference on Services Computing, pp
120–127. IEEE Press, 2013.

[6] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for adaptive resource
provisioning in the cloud,” Future Gener. Comput. Syst., vol. 28, no. 1, pp. 155–162, 2012.

[7] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Capacity leasing in cloud systems
using the opennebula engine.” Workshop on Cloud Computing and its Applications 2008
(CCA08), October 22-23, 2008,



28

[8] J. N. Silva, L. Veiga, and P. Ferreira, “Heuristic for resources allocation on utility computing
infrastructures,” in Proceedings of the 6th international workshop on Middleware for grid
computing, 2008.

[9] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A Review of auto-scaling techniques for
elastic applications in cloud environments”, Journal of Grid Computing, pp 1–34, 2014.

[10] J. Jiang, J. Lu, and G. Zhang, “An innovative self-adaptive configuration optimization system in
cloud computing”, Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE Ninth
International Conference, 12-14 Dec. 2011, pp 621 – 627.

[11] M. Mao and M. Humphrey, “A performance study on the VM startup time in the cloud,” in
Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on, 2012, pp. 423–430

[12] Y. Jiang, C.-S. Perng, T. Li, and R. Chang. “Intelligent cloud capacity management”, IEEE/IFIP
Network Operations and Management Symposium (NOMS), 2012.

[13] B. Bouterse and H. Perros, “Scheduling cloud capacity for time-varying customer demand,” in
Cloud Networking (CLOUDNET), 2012 IEEE 1st International Conference on, 2012, pp. 137–
142.

[14] H. E. Schaffer, S. F. Averitt, M. I. Hoit, A. Peeler, E. D. Sills, and M. A. Vouk, “NCSU’s virtual
computing lab: a cloud computing solution,” Computer, vol. 42, no. 7, pp. 94–97, 2009.

[15] B. Groskinsky, D. Medhi and D. Tipper, “An investigation of adaptive capacity control schemes
in a dynamic traffic environment,” IEICE Trans. on Commun. E Series B, vol. 84, pp. 263-274,
2001.

[16] É. Dubois and E. Michaux, “Grocer 1.64: an econometric toolbox for Scilab”, 2001.

[17] B. Bouterse, “VM Capacity Planning for Software-as-a-Service Environments”, Ph.D. Thesis,
North Carolina State University, 2016.


