
Modeling Live Adaptive Streaming over HTTP

Savera Tanwir and Harry Perros

Abstract

Video streaming methods have evolved greatly over the years. Today, the
most prevalent technique to stream live and video on-demand is the adaptive
HTTP streaming and is used by several commercial vendors. In this paper,
we pesent an approximate analytic model for live adaptive streaming over
HTTP. Using this model, we propose a new rate control algorithm that makes
the rate transitions less frequent and increases the quality of experience for
the viewer. Also, the model can be used to characterize the departure packet
process at the video server. To the best of our knowledge, this is the rst video
trac model for adaptive HTTP streaming to be reported in the literature.

Keywords:

HTTP streaming, DASH, live streaming, analytical model, rate adaptation
algorithm

1. Introduction

Over the last few years video-based applications, and video streaming
in particular, have become very popular generating more than half of the
aggregate Internet trac. This has become possible through the gradual
development of highly ecient video compression methods, broadband access
technologies, QoS schemes in the IP network and the development of adaptive
video players. Today, the most popular and cost eective means for video
streaming is adaptive streaming over HTTP. Multimedia content can now
be delivered eciently in larger segments using HTTP. The basic idea is to
chop a continuous stream into segments, encode these in multiple qualities
and make these available for download using plain HTTP methods. The
client video player application monitors the download speed and requests
chunks of varying quality in response to changing network conditions. Its
advantage is that the deployed web infrastructure is easily reused, even for

Preprint submitted to Computer Communications December 4, 2015



live segment streaming. In case of live streaming, the segments are produced
periodically; with a new segment becoming available shortly after it has been
recorded and encoded completely.

Several recent players, such as Microsoft Smooth Streaming, Apple’s
HTTP Live Streaming, Adobe OSMF and Netix players all use adaptive
streaming over HTTP. However, each implementation uses formats and pro-
prietary client protocols. Due to the market prospects and requests from
the industry, adaptive streaming has been standardized by 3GPP and ISO
as MPEG-DASH (Dynamic Adaptive Streaming over HTTP) in 2011 [1]. In
addition to providing all benets of streaming over HTTP, DASH supports
live media services and it is bitrate adaptive.

Dierent aspects of dynamic adaptive HTTP streaming have been ex-
plored in the literature. The research work done in this area is mostly fo-
cused on the performance and design of ecient rate control algorithms and
the interactions of HTTP streaming with TCP. However, there is a lack of
analytical models for video streaming trac over HTTP. Performance mod-
eling is necessary for service providers to properly maintain quality of service
(QoS) and it requires accurate trac models that have the ability to capture
the statistical characteristics of the actual trac on the network. Better un-
derstanding of the network through modeling provides the means to make
better design decisions. In this paper, we present the rst (to the best of our
knowledge) analytic model for live adaptive streaming over HTTP. Using this
model, we propose a new rate control algorithm that reduces the number of
rate transitions and increases the quality of experience for the viewer. The
proposed model can also be used to characterize the departure packet process
at the video server.

This paper is organized as follows. In section 2, we summarize the re-
search done in this area. In section 3, we present our model and in section
4 we provide a validation of its accuracy. In section 5 we describe a new
rate contorl algorithm based on the proposed analytic model. Lastly, the
summary is presented in section 6.

2. Literature Review

Dierent aspects of dynamic adaptive HTTP streaming have been ex-
plored in the literature over the past few years. Several performance studies
have been conducted to compare various players that use adaptive HTTP
streaming. In [2], Akhshabi et al. conducted an experimental evaluation of

2



three commercial adaptive HTTP streaming players, i.e., Microsoft Smooth
streaming, Netix and Adobe OSMF player. They noted that all players
had their shortcomings and furter research is needed in order to improve
the rate adaptation algorithms. A study of the performance of Adaptive
HTTP Streaming over dierent access networks is presented in [3]. Muller
et al. compared Microsoft Smooth Steaming (MSS), Adobe HTTP Dynamic
Streaming (HTS), and Apple HTTP Live Streaming (HLS) and DASH in a
vehicular environment in [4], using the client implementations for the propri-
etary systems and their own DASH client. In [5], Miller et al. compare MSS
client and their own DASH client in Wireless Local Area Network (WLAN)
environment. In [6], the dierent delay components in DASH for live stream-
ing are identied and analyzed. The best performance in terms of reduced
delay is obtained with short media segments but short segments increase
server load. Seufert et al. surveyed the literature that covers QoE aspects
of adaptation dimensions and strategies in [7]. They reviewed recent devel-
opments in the eld of HTTP adaptive streaming (HAS), and existing open
standardized and proprietary solutions.

Several rate adaptation algorithms and optimization strategies have been
proposed in the literature for adaptive video streaming over HTTP. In [8],
Miller et al. presented an algorithm that aims at avoiding interruptions of
playback, maximizing video quality, minimizing the number of video qual-
ity shifts and minimizing the delay between user’s request and the start
of the playback. Tian and Liu proposed a rate control algorithm [9] that
smoothly increases video rate as the available network bandwidth increases,
and promptly reduces video rate in response to sudden congestion events. In
[10], Bokani et al. consider a Markov Decision Process (MDP) to derive the
optimum segment rate selection strategy that maximizes streaming quality.
Xing et al. [11] also formulated the optimal video streaming process with
multiple links as a Markov Decision Process (MDP). MDP is time consum-
ing and computationally expensive, and in view of this they also proposed
an adaptive, best-action search algorithm to obtain a sub-optimal solution.
Mansy et al [12] proposed a technique called SABRE (Smooth Adaptive Bit
RatE), that enables a video client to smoothly download video segments from
the server without causing signicant delays to other trac sharing the link.
In [13], Liu et al. proposed two new rate adaptation algorithms for the serial
and the parallel segment fetching methods. Jiang et al. proposed a rate
adaptation algorithm called FESTIVE (Fair, Ecient, Stable, adaptIVE) in
[14]. SVC has been shown as better encoding method for adaptive streaming

3



and several authors have proposed rate adaptive algorithms for SVC encoded
video in [15], [16], [17] and [18].

Apart from the research on performance and rate adaptation, the inter-
actions of HTTP adaptive streaming with TCP has also been studied in
the literature. Dierent aspects like fairness, TCP throughput and trac
shaping have been considered. In [19], Akhshabi et al. described how the
competition for available bandwidth between multiple adaptive streaming
players can lead to instability, unfairness, and bandwidth underutilization.
The authors identied that once the playback buer size reaches a certain
target buer, the player switches to the Steady-State during which it aims
to maintain a constant playback buer size. The player requests one chunk
every T seconds (if the download duration is less than T) or as soon as the
previous chunk is received. This leads to an activity pattern in which the
player is either ON, downloading a chunk, or it is OFF, staying idle. They
conducted experiments with real adaptive streaming players and showed that
the three issues mentioned above can arise in practice. They also showed that
dierent factors like the duration of ON-OFF periods, the fair share relative
to the available prole bitrates, and the number of competing players, can
aect the stability of the system. Esteban et al. examined the interactions
between HTTP Adaptive Streaming and TCP in [20]. A TCP transfer can
be divided into 3 phases, the initial burst, ACK clocking, and trailing ACK
phases. HAS requests are relatively small and a signicant portion of the
transmission duration is spent in the initial burst and trailing ACK phases.
The authors note that if the congestion window is large enough and the
data is small enough, the entire transmission occurs during the initial burst,
eliminating the ACK clocking phase.

3. The proposed model

In this paper, we propose a novel analytical model for live adaptive
streaming over HTTP. To the best of our knowledge, this is the rst such
analytic model for adaptive video streaming.

The model consists of the following three components:

1. The video server model

2. A queueing network model of the IP network between the client and
server

3. The client video player model

4



In DASH, HTTP servers and HTTP caches are used to host and distribute
continuous media content and the clients can access media resources through
an HTTP-URL. In live adaptive streaming, the sequence of media segments
is created on the y from a continuous media stream. The segmenter function
of the video server creates a new media segment every t seconds. Thus, each
media segment contains t seconds worth of media data, i.e., the playback time
for each segment is t seconds. The DASH Media Presentation Description
(MPD) describes all available and not-yet available media segments either
for the entire live session or up to the next MPD update. The client obtains
the start time of the live stream from the MPD and synchronizes itself with
the server. The client must be time synchronized with the server. If it is
properly synchronized, it can calculate the latest available media segment
on the server given the segment duration. It then starts fetching the media
segments as they become available on the server every t seconds. The client
also monitors the network bandwidth uctuations continuously and chooses
the subsequent segments accordingly.

We note that the video server transmits a segment, whose length in bytes
is determined by the bitrate, in a series of IP packets set to Maximum Trasfer
Unit (MTU). We assume that the last packet is also equal to MTU. In view
of this, the above three models are all dened in discrete time, where the
length of the time slot is equal to the amount of time it takes to transmit
one IP packet of size equal to the MTU.

3.1. The video server

The nature of network trac generated by live segment streaming is very
dierent from the traditional bulk transfer trac stemming from progressive
video download and le transfer. The video trac generated by the video
server is determined by the client request strategy. The client downloads
the segments of a stream one after another. It chooses the bitrate of the
segments according to the available bandwidth so that the time it takes to
download a segment is shorter or equal to the actual segment duration (the
playout time of a segment). The download time must be shorter or equal to
the segment duration, otherwise the client buer would eventually become
empty and pauses would occur in the playout. In general, it takes less time to
download a segment than it takes to playout the segment, i.e., the download
speed is higher than the playout speed. The client buer hides this inequality
by buering every segment that is downloaded. These successive download-
and-wait operations create an on-o trac pattern of IP packets.

5



Figure 1: Segment on-o periods

Based on this observation, we have modeled the video server as an on-o
video trac source. The server transmits the packets in a video segment
back to back during the on period and then stops transmitting during the
o period. All packets are of equal size set to the MTU. The transmission
begins again when it receives the next HTTP GET request from the client
for the next video segment. In case of live-streaming, the sum of the on and
o periods is always the segment duration as shown in gure 1.

The length of the on period and consequently of the o period can vary
throughout the life time of the connection depending on the bitrate requested
by the client. The requested bitrate diers due to the variations in the
available bandwidth as measured by the client. The length of the on period
depends on the size of the video segment which is determined by the requested
bitrate. Hence, for each video streaming rate, there will be a dierent length
of the on-o period.

We assume that the TCP congestion window is large enough to send
all the packets back-to-back in a burst. We have not modeled any TCP
retransmissions that may occur due to congestion and packet losses. The
retransmitted packets are of no use to the client in case of live streaming
since it maintains a buer of one video segment only. If it will receive any
packets from the previous segments they will be discarded. Also, we assume
that the congestion control algorithm of TCP is tailored to live streaming,
which means that the congestion window size is not decreased drastically
during congestion, because it can cause large packet delays that can make
the entire segment reach the client over a span of more than one segment
duration. The delayed packets will be discarded in such situation. Lastly,
the adaptive video client will react in case of a deadline miss and request for
a lower rate from the server in the next t-second interval.

In view of these observations, we model the video source model as a
Markov chain with unit time equal to video segment duration t. The states
of the Markov chain represent the dierent qualities or bitrates that are

6



Figure 2: Markov chain for three bitrates

available for download for each video. A model for three dierent bitrates is
shown in gure 2. Within each state, the packets are generated using an on-
o process. The length of the on period is equal to the (size of the segment
in a given quality)/(transmission speed of the server). The o period is t

minus the length of on period. Thus, the lengths of on and o periods are
xed for each state.

In the real system, the transitions among the state of the Markov chain
are caused by the client and they depend on the available bandwidth as
measured by the client along with the client buer occupancy level. Specif-
ically, the client estimates the available bandwidth as the (segment size in
bytes)/(download time for the entire segment) and subsequently it decides
whether to switch to a higher or lower rate or stay at the same rate. Conse-
quently, the transition probabilities are obtained by modeling the behavior of
the client. In order to determine the client’s decision as to whether to change
the bitrate, we need to model the delay that the packets of the same segment
suer until they reach the client, and also how spread out these packets are
from each other due to interleaving with other packets in the routers along
the path from the video server to the client. This is done using the queueing
network model described below.

7



Figure 3: The queueing network under study

3.2. The queueing network

We use a discrete-time queueing network to depict the network between
the video server and the client. We assume that this is a wide area network
(WAN) connected to an access network which serves the client. We assume
that Dierentiated Services (Diserv) is used to support QoS in the network.

Dierentiated Services is a multiple service scheme that provides dierent
QoS to dierent ows. Several QoS classes have been dened, known as the
DiServ Code Points (DSCP). The DSCP is carried in the IP header of
each packet and it is used to determine which priority queue the packet
will join at the output port of a router. Video packets are typically given an
AF41 priority. Consequently, the WAN is modeled by a series of single-server
queues which represent the AF41 queue at the output port of each router
along the path of the video stream. An example of this queueing network
is shown in gure 3, where the rst four queues represent the WAN and the
last queue represents the access network. Each WAN queue receives packets
transmitted from the video server to the client (tagged trac), along with
other video packet trac from other sources (background trac).

All packets are assumed to be equal to 1500 bytes (the path MTU). All
packets in each WAN queue are served in a FIFO manner at a rate µ equal
to (1500 bytes)/(speed of the link), where the link speed is the same for the
four WAN queues. The background trac in a WAN queue is transmitted
to the same next hop router as the tagged trac and it may get dispersed
to dierent output ports of the router. It is likely though, that some part
of it will be transmitted out of the same output port of the next hop router
as the tagged trac. In view of this, we assume that for each WAN queue
80% of all the background trac that arrives at the queue departs from the
queueing network after it is served and the remaining 20% continues on to
the next queue (these percentages can be readily varied in the model). A

8



similar assumption holds for the remaining WAN queues.
The last queue of the queueing network depicts part of a metro Ether-

net access network. In this case, the trac gets fanned out to the Ethernet
switches, and eventually to the users. We are only modeling the rst hop be-
tween the Broadband Remote Access Server (BRAS) router and an Ethernet
switch. The BRAS sits at the core of an ISP’s network, and aggregates user
sessions from the access network. (Other hops within the access network can
be easily modeled). There is no background trac at the Ethernet switch
and the service rate is µ1 = (1500 bytes)/(speed of the link). We assume that
the link speed of the Ethernet switch is a hundred times less than the WAN
router link speed (other speeds can also be modeled). Due to the fan out of
the trac to the end users, we assume that 95% of the background trac
that enters from the BRAS queue follows a dierent path after it leaves the
Ethernet switch. That is, a small percentage goes along with the tagged
trac to the user.

Of interest to the overall model proposed in this paper, are the following
two quantities:

1. The spread of the original video segment transmitted by the video
server, when it arrives at the client

2. The end-to-end delay in the network of the leading packet of a segment.

As will be seen, these two quantities are used in the client model presented
in section 3.5.

3.3. Calculation of the spread

Let Ns be the number of packets that make up one video segment at a
given bit rate. We assume that these packets arrive back-to-back at queue 1,
one per time slot, where a time slot is equal to the time it takes to transmit
a 1500-byte packet. At the same time it is possible that there may be back-
ground arrivals. Background trac enters the router from other input ports
and they end up being interleaved in between the packets of the segment at
the AF41 queue at the output port of the router. These packets increase the
length of the original segment, i.e., they increase the amount of time elapsed
between the arrival of rst packet and the last packet of the video segment,
referred to as the ”spread”.

Figure 4, shows how the spread is formed. Let us assume that the segment
consists of four packets (1,2,3,4) and during its arrival to queue 1, three

9



Figure 4: Formation of the spread

background packets arrive (A,B,C). A possible formation of the spread is
4CB32A1. At the next queue, packets A and B depart and their slots are
taken over by new background packets D and E resulting in a new formation
4GFC3E2D1.

As shown in gure 5, let nib be the number of packets that arrive during
the time it takes for the spread to arrive at queue i, and let dib be the
number of background packets in the spread that depart before the segment
joins queue i. The remaining background packets in the spread is indicated
by ni, i.e., ni “ ni´1 ` nib ´ dib. In the case of the access Ethernet queue
nib “ 0.

We assume a binomial distribution of the background arrival process.
That is, there is a probability p that a background packet arrives in a time
slot. Consequently, the probability that k background packets arrive in the
rst queue during the time the Ns packets arrive is:

P rn1b “ ks “

ˆ

Ns

k

˙

pkp1´ pqNs´k (1)

The probability distribution of the background packets n2 is a convolution
of n1, the background trac at node 2, n2b and the departures at node 2, d2b.
Let q be the probability that a background packet leaves before the segment
joins queue i. This can be written as:

P rn2 “ l|n1s “ P rn2bs b P rn1 ´ d2bs

10



Figure 5: The queueing network under study

or,

P rn2 “ l|n1s “
řl

pj“0q P rn2b “ jsP rn1 ´ d2b “ l ´ js, if n1 ě l

and,

P rn2 “ l|n1s “
řl

pl´n1q
P rn2b “ jsP rn1 ´ d2b “ l ´ js, if n1 ă l

where n1 “ n1b,

P rn2b “ js “
`

n1`Ns

j

˘

pjp1´ pqn1`Ns´j and,

P rn1 ´ d2b “ l ´ j “ ms “
`

n1

m

˘

qmp1´ qqn1´m

Unconditioning on n1, we obtain an expression for the distribution of n2:

P rn2 “ ls “
ř

n1
pP rn2bs b P rn1 ´ d2bsqP pn1q

In general for queue i, we have:

P rni “ ls “
ÿ

ni´1

pP rnibs b P rni´1 ´ dibsqP pni´1q (2)

where,

P rnib “ js “
`

ni´1`Ns

j

˘

pjp1´ pqni´1`Ns´j and,

P rni´1 ´ dib “ l ´ j “ ms “
`

ni´1

m

˘

qmp1´ qqni´1´m

11



At the last queue, we do not consider any new background trac as ex-
plained above. The distribution of the background packets can be expressed
as:

P rnK “ ls “
ÿ

nK´1

pP rnK´1 ´ dKb “ lsqP pnK´1q (3)

The total length of the spread is equal to the sum of the video segment
packets and the background trac packets at the last queue. Since, the video
segments packets are xed for a given bitrate, the pdf of the spread is the
same as the pdf of the background trac given by equation 3.

The case of slow video server

In this section we consider the case where the video server transmits
packets at a rate lower than its transmission speed. This situation can arise,
for instance, if it is multiplexing the video packets for multiple clients or if
there are restrictions on server transmission rate from the TCP or application
layer. In this case the packets that make up a segment will not be transmitted
back to back. They will be spaced out and the segment will span a larger
number of time slots than in the above case. We have modeled this as follows:

Let Nst be the number of slots that make up one video segment for a
given bit rate. We assume that the video packets arrive at queue 1, one per
M time slots. Let Ns denote the number of packets per segment. At the
same time there may be background arrivals. Background trac enters the
router from other input ports and they are interleaved in between the packets
of the segment at the AF41 queue of the output port. The background
packets may ll the empty slots in between the slots occupied by the packets
from the video segment. Depending on the rate of background trac, if the
background packets that arrive during Nst slots is more than the empty slots
they will increase the spread otherwise the length of the spread remains the
same at the output port of the router.

Figure 6, shows how the spread is formed. Here we assume that the video
server sends out packets at half of the link transmission speed. Let us assume
that the segment consists of four packets (1,2,3,4) and during its arrival, four
background packets arrive (A,B,C,D). A possible formation of the spread is
4DC3B2A1. At the next queue, packets A, B and D depart and their slots
are taken over by new background packets E, F and G resulting in a new
formation 4HGC3F2E1.

12



Figure 6: Formation of the spread

In this case, the number of background arrivals at queue i can be ex-
pressed as:

P rni “ ls “
ř

ni´1
pP rnibs b P rni´1 ´ dibsqP pni´1q

where,

P rnib “ js “
`

ni´1`Nsp

j

˘

pjp1´ pqni´1`Nsp´j, and

P rni´1 ´ dib “ l ´ j “ ms “
`

ni´1

m

˘

qmp1´ qqni´1´m

where Nsp is the length of the spread at the input queue in terms of
number of slots and is given as:

Nsp “ MaxpNst, ni´1 `Nsq

In this case, the pdf of the spread is same as the pdf of background packets
only if the sum of video packets and background trac is greater than the
total number of slots in the spread, Nst. Otherwise, the length of spread is
xed and equals Nst.

At the last queue, we do not consider any new background trac. Also
the spread shrinks and any empty slots disappear because of the much lower
transmission speed of the last router. The distribution of background packets
can be expressed as:

13



P rnK “ ls “
ř

nK´1
pP rnK´1 ´ dKb “ lsqP pnK´1q

This also gives the pdf of the number of packets in the spread.

P rnK “ l `Nss “
ÿ

nK´1

pP rnK´1 ´ dKb “ lsqP pnK´1q (4)

3.4. Calculation of the end-to-end delay

In order to calculate the total time te taken to download a complete
video segment, we need to know the end-to-end delay of the rst packet in
the video segment along with the time delay between the rst packet and
the last packet tsp. The pdf of the time delay tsp can be obtained from
the pdf of the spread, calculated above. Let tr be the service time of one
packet, where tr= 1500*8/(speed of link). So, the time delay between the
rst packet and the last packet in the segment is equal to the number of
packets in the spread multiplied by the service time of each packet. Thus, if
x is the total number of packets that constitute the spread then we can write
tsp “ tr ˚ x. Since the distribution of the time delay between the rst and
the last packet is the same as the distribution of the packets in the spread,
we have: P rtsp “ tr ˚ xs “ P rnK “ xs.

The end-to-end delay of the rst packet in the segment consists of the
propagation delay and the transmission and queueing delays at each router
along the path of the segment. In our model, we have assumed that the
background trac follows a binomial distribution, i.e., for each time slot
there is a probability p that a background packet arrives. Now, the combined
tagged and background trac oered to each link has to be less than the
link’s maximum throughput, so that the link’s utilization is less than 100%.
In view of this, there are no background packets queued at each router when
the rst packet of a segment arrives at the router. (This was also veried
through extensive simulations). Therefore, the queueing delay at each link
encountered by the leading packet of a segment is zero, and the end-to-end
delay of the rst packet is the propagation delay and sum of transmission
times tp. This leads us to the pdf of the total delay: P rte “ tp ` tr ˚ xs “
tp ` P rnK “ xs, where P rnK “ xs can be determined using equation 3 or 4.

3.5. The client player

In HTTP live segment streaming, it is a client’s responsibility to download
the next segment before the previous segment is completely played out. This

14



Figure 7: Client request strategy

implies deadlines by which segments need to be encoded and be available
at the video server for download. On the client’s side, if a segment is not
available, a deadline miss occurs, and the playback stalls. There are several
segment request strategies that clients can implement. Some of the strategies
are discussed in [21]. We have considered the strategy that maintains the
liveness of one segment duration throughout the streaming session which
means that a segment that becomes available at ti at the video server is
presented at ti`1 at the client.

A deadline miss also occurs if the download time is longer than the seg-
ment duration, t. In this case, the part of the segment downloaded after
the segment playout deadline is skipped. In order to decrease the number
of deadline misses, the adaptation algorithm chooses the segment quality
so that the download ends at least ts seconds before the segment deadline.
Thus, a deadline miss occurs only if the download time is longer than the
estimated download time plus the time safety. The minimal value of ts is
referred to as the time safety. This request strategy is illustrated in gure
7. A client rst requests the latest segment on the server at r0. The rst
segment is downloaded completely at the client at d0 and the playout be-
gins at t1. The next segment is requested at r1 and available at the client
at d1. The number of bytes that can be downloaded within the time safety
increases with available bandwidth. This results in fewer deadline misses as
the available bandwidth increases. In this respect, one should choose a larger
time safety if more bandwidth uctuations are expected. We can also adjust
the time safety dynamically based on the observed bandwidth uctuations.

We assume that the client makes a request immediately after t´ts seconds
and that the request reaches the server before the next t-second period starts.
We have used the following client rate adaptation algorithm in our model:

1. Download the rst segment at the lowest bitrate

2. Determine the download time for the current segment

15



3. If the video segment is completely downloaded by time t´ ts
a. Determine the highest bitrate so that it can be downloaded by

t´ ts with the current available bandwidth
i. Determine the delay per bit for the current rate (rcurr), i.e.,rcurr “

te{prcurr ˚ tq
ii. Determine the highest bitrate, rnxt, for which the expected

download time is the closest to t´ts, i.e., (te{prcurr ˚tqq˚prnxt˚tq » t´ts
b. Send an HTTP GET request for this higher bitrate (rnxt)
c. Go to step 2

4. If the video segment is not downloaded by t´ ts
a. Send an HTTP GET request for the next lower bitrate for which

the expected download time is closest to t´ ts
b. Go to step 2

3.6. State transition probabilities

Using the above algorithm and the cdf of the total delay for each rate, we
can determine the state transition probabilities for the video source model.
The total time to download a segment determines the available bandwidth
which helps the client decide the bitrate to download the next segment.
Therefore, we obtain the cdf from the pdf of the end-to-end delay obtained
in section 3.2. Then, we nd points on the cdf beyond which the bitrate has
to be changed in order to download the next segment within the deadline
using the current available bandwidth.

For example, let us assume that the client can request 2-seconds segments
with three dierent bitrates: 800, 900 and 1000 Kbps, and that the time
safety is 0.3 seconds. That means t´ ts is 1.7 seconds and the segment needs
to be completely downloaded at the client by this time. Figure 8 gives the cdf
for 900 Kbps bitrate obtained assuming the queueing network shown in gure
3 with four WAN routers that transmit at 1.2 Gbps and one Ethernet access
network node with a transmission rate of 1.2 Mbps. The background trac
is 60% of the total link capacity in the WAN and only 5% of it continues
into the Ethernet access network. Each point on the cdf gives the probability
that the video segment encoded at 900 Kbps will reach the client within a
certain end-to-end delay (the x-axis). For example, point A indicates that
the end-to-end delay will always be less than or equal to 1.535 seconds with
a probability of 0.005. From this, we can calculate the total delay per bit, i.e,
1.535/(900,000*2) (since there are 900,000*2 bits in the 2-second segment).
We can also calculate the total delay for a segment encoded at a higher

16



Figure 8: CDF of the end-to-end delay for 900 Kbps bitrate

bitrate assuming the same delay/bit. For example, at 1000 Kbps, the delay
will be 1.7 seconds. Thus, A is the point beyond which if the client switches
to a higher rate, the total delay taken by the new segment will be more than
t ´ ts which is 1.7 in this case. This implies that the client only switches
to a higher rate if the end-to-end delay is less than or equal to 1.535 sec.
This point then gives us the state transition probability of switching from
900 Kbps to 1000 Kbps.

Now, let us nd the probability of switching to a rate lower than 900
Kbps. This will only happen if the total delay is greater than 1.7 seconds.
Point B on the curve, indicates that the end-to-end delay will always be less
than or equal to 1.7 seconds with a probability of 0.9496. This means that
the probability the end-to-end delay will be more than 1.7 is 1-0.9496 =
0.0504. Also the probability that the client will request the same rate again
based on the current delay is 1-0.0504-0.005=0.9446.

Employing the same technique, we can calculate all rows of the transition
matrix using the cdfs for dierent rates and for dierent time safety values.

17



4. Validation of the rate transition rates

In this section, we validate our method for calculating the rate transition
probabilities of the server trac model using simulation. (The expression of
the cdf of the end-to-end delay is exact, and cosequently it does not require
validation). The simulation model is a discrete-time model based on the same
assumptions as the analytic model described above, and it consists of a video
server that generates video packets in a queueing network of 5 single-server
queues and a client player that implements the rate control logic. The video
server generates segments at dierent rates based on the requests from the
client every t seconds. These segments are packetized and transmitted in the
network in 1500-byte packets. The background trac is assumed to follow
a binomial distribution. A slot is equal to the amount of time it takes to
transmit out a 1500 bytes packet. We assume that the packet arrivals occur
at the beginning of a slot.

The rst four queues are part of the core network and we set their service
rate to 1.2 Gbps. The last queue is assumed to be part of the Ethernet access
network and transmits at a speed that is hundred times less than the core.
All packets have the same priority. We assume that 80% of the background
trac that arrives at each queue in the core network leaves before entering
the next queue, and 95% of all the background trac leaves before entering
the last queue. The background trac is set to 60% of the link capacity.

The client implements the rate adaptation algorithm described in section
3.5. It maintains a buer of one video segment as we are modeling the live
streaming case. The client sends the request at t ´ ts and we assume that
it reaches the server, after a xed delay that equals the transmission and
the propagation delays before the server transmits the next segment. The
simulation model was run for a million video segment requests.

We compared the transition probabilities obtained from the simulation
model with the transition probabilities calculated using the cdf of the end-
to-end delay obtained from the mathematical model as explained in section
3.6. In the simulation model, we determine the transition probabilities by
counting the frequency of transitions among the bitrates requested by the
client for each segment. The client requests a new bitrate after downloading
each segment based on the rate control algorithm discussed in section 3.5
This is done for a large number of segment requests. The cdfs of the end-
to-end delays for a chosen set of rates are given in gure 9. The set of rates
are determined based on the input parameters of the model, i.e., the trans-

18



Figure 9: The cdf of the end-to-end delay for rates 800,850,900,950 and 1000 Kbps

mission rates of the routers and the background trac as these dictate the
available bandwidth. These are the most selectable rates for given network
parameters. For example, if the available bandwidth is 1 Mbps, the client
will most probably select a bitrate closer to 1 Mbps instead of a very low
rate, say 300 Kbps or a very high bitrate. Hence, there will be no transitions
to those bitrates even if they are oered to the client.

We compared the one-step transition matrices using the Mean Squared
Error (MSE), dened as:

MSE “
n
ÿ

i“1

n
ÿ

j“1

pXij ´ Yijq
2{sizepXq (5)

where Xij are the transitions calculated using the mathematical model, Yij

are the transitions determined using simulation, and sizepXq is the total
number of elements in the matrix. The results are plotted in gure 10 as a
function of the time safety t´ ts.

We conducted another set of experiments assuming faster core and access
network elements. We set the transmission rate in the core network to 10

19



Figure 10: Mean squared error: Rates 800,850,900,950,1000

Gbps and the access network transmission to 2 Mbps. The set of video
bitrates that the client can choose from are from 1650 Kbps to 1800 Kbps in
increments of 500 Kbps. The cdfs of the end-to-end delay for this case are
shown in gure 11, and the results for MSE as a function of the time safety
t´ ts are shown in gure 12.

We note that in both experiments, the MSE value is very small. Additonal
results were obtained for other input values including the case of the slow
servers, see [22]. Based on these results, it appears that the mathematical
model is very accurate and predicts the rate change probabilities very close
to those obtained by simulation.

5. Applications of the model

As was seen above, our analytic model can be used to characterize the de-
parture process of IP packets from the video server. Video trac models are
crucial in network dimensioning and resource management of IP networks.
Using the proposed model, we can determine the packet arrival process for
dierent types of networks by varying the number of nodes, link capacities,

20



Figure 11: The cdf of the end-to-end delay for rates 1.65, 1.7, 1.75 and 1.8 Mbps

Figure 12: Mean squared error: Rates 1.65, 1.7, 1.75 and 1.8 Mbps

21



background trac utilization and video server transmission rates. In ad-
dition, the model can be used by the video service providers iteratively to
help determine the optimal video bitrates to encode the videos for given net-
work parameters and types of clients. It also enables them to dimension the
server properly to meet clients’ quality of service requirements. This may
include determining a maximum number of clients per output port that can
be entertained simultaneously.

In the remaining of this section, we describe a new rate control algorithm
which takes future decisions into consideration in order to avoid playback
interruption and achieve better smoothness and quality.

5.1. Rate control algorithm

The main idea behind the algorithm is that the client estimates the avail-
able bandwidth of the network links and this information can be used to
estimate the time required to download a video segment that is available at
dierent bitrates. The client gets the information about all the bitrates, that
the server oers, from the MPD le. The client constructs the cdfs for these
dierent bitrates and then decides on the optimal rate to download the next
segment. We saw in section 3.2, that if the speed of access link is several times
less than that of the WAN links (which is true in most cases), the spread
shrinks in terms of number of packets (and slots) but takes more time to
be transmitted because of the slower speed. Making use of this observation,
the client can estimate the cdf of the delay by measuring the background
trac that aected the spread at the access network link only. In order to
do that, the client player measures the time it took to download the com-
plete segment. Since it knows the capacity of the link, it can also determine
how much time the actual video segment data took to download out of the
total time. The dierence between the two gives the delay caused by the
background trac and the percentage of background trac that aected the
spread can be estimated from that. The client assumes that the background
trac arrival process is binomial and the time is slotted just as in the model.

The pdf of the number of background packets in the spread can be written
as:

P rnKb “ ks “

ˆ

Ns

k

˙

pkp1´ pqNs´k (6)

22



Here p is the percentage of background packets per segment estimated by
the client every t seconds. Since Ns is xed, the pdf of the spread is same
as above. From that the cdf of the spread and consequently, the cdf of the
end-to-end delay can be obtained. In order to do that, the client should also
measure and add the propagation delay.

We compared the pdf of the spread and the cdf of the end-to-end delay
obtained by the above approximation with the ones calculated by the model.
We assumed the same queueing network model described in section 3.2 that
consists of single-server queues and a client player that implements the rate
control logic. The rst four queues are part of the core network and we set
their service rate to 1.2 Gbps. The last queue is assumed to be part of the
Ethernet access network and transmits at a speed that is hundred times less
than the core. We assume that the background trac arrives at each router
in the core network and 80% of the previous background packets leave before
entering the next router queue. 95% of all the background trac leaves
before entering the last queue. We assume the background trac to be 60%
of the link capacity. Only 5% of the net background trac packets from the
previous queues join the last queue and contribute to the spread. For the
given input parameters, the client estimated the background packets to be
9% of the total packets in the spread at the last queue on average. Based on
this percentage, we approximated the pdf of the spread and the cdf of the
end-to-end delay and compared with those determined using the model. The
results are shown in gures 13 to 16.

We can see that the approximated pdfs and cdfs match very well with
the ones obtained using the model.

Based on the above delay estimation technique, we propose the following
rate adaptation algorithm:

1. Download the rst segment at the lowest bitrate

2. Determine the download time for the current segment

3. If the video segment is completely downloaded by time t´ ts
a. Based on the download time of the current segment, determine

the percentage of background trac (pest) that aected the spread
b. Determine the highest bitrate so that it can be downloaded by

t´ ts with the current available bandwidth
i. Determine the delay per bit for the current rate (rcurr)
ii. Determine the highest bitrate, rnxt, for which the expected

download time is the closest to t´ts, i.e., (te{prcurr ˚tqq˚prnxt˚tq » t´ts

23



Figure 13: The pdf of the number of packets in the spread for 800 Kbps bitrate

Figure 14: The pdf of the number of packets in the spread for 900 Kbps bitrate

24



Figure 15: The cdf of the end-to-end delay for 800 Kbps bitrate

Figure 16: The cdf of the end-to-end delay for 900 Kbps bitrate

25



iii. Estimate the cdf of the end-to-end delay for rnxt based on the
estimated background trac (pest). Check if the 90th percentile of the
delay for rnxt ă“ t ´ ts. If not then choose rnxt as the second highest
bitrate.

c. Send an HTTP GET request for this chosen bitrate (rnxt)
d. Go to step 2

4. If the video segment is not downloaded by t´ ts
a. Send an HTTP GET request for the next lower bitrate for which

the expected download time is closest to t´ ts
b. Go to step 2

We assume that the client makes a request immediately after t´ts seconds
and that the request reaches the server before the next t-second period starts.
In order to smooth the rate change, we can use a moving average for the
current end-to-end delay instead of the latest value. Similarly, we can use a
moving average of the background trac. The moving average can be based
on last N segments, where the best value of N can be determined using
simulation.

We implemented the algorithm in the simulation and compared the results
with the algorithm discussed in 3.5, referred to as the ”simple algorithm”.
We assume that the client can request 5 available bitrates at the server, i.e.,
800, 850, 900, 950 and 1000 Kbps. We compared the simple algorithm with
the new proposed algorithm, referred to as the ”model-based algorithm”,
using the following metrics: the total number of rate transitions during the
length of the simulation, the number of times a particular rate is selected
and how often the transitions occur. In order to compare these metrics, we
varied the background trac during the simulation. This was done using
a discrete time Markov-modulated Bernoulli process (MMBP) consisting of
three states: low, medium and high (see gure 17). Within each state i, the
background trac is generated using a binomial distribution with probability
pi, set to 0.4, 0.6 and 0.7 for low, medium and high activity states respectively.
The same value of pi is used at the rst four queues. At the last queue, only
5% of the background trac joins the queue like before.

We set the state transition probabilities rij in such a way that the process
spends most of the time in the medium activity state and least of the time
in high activity state. Since it is a discrete-time process, time is measured in
time slots. Here a slot is equal to the segment time t. During the simulation,
a new state is determined every t seconds using the state transition matrix

26



Figure 17: Markov chain for background trac arrival process

and the background trac is generated accordingly at each queue. The state
transition probabilities we used are:

»

–

0.8 0.18 0.02
0.15 0.8 0.05
0.01 0.19 0.8





The stationary probabilities obtained after solving this matrix are:

»

–

0.3661
0.4778
0.1561





We used a moving average for the estimated pest in the algorithm. We
present the results for a moving average of N = 5 and 10 previous seg-
ments. In gures 18 and 19, we present the rate transitions for the rst 200
segments for both simple and the proposed model-based algorithm for two
dierent moving average windows. We can conclude from the results that
N = 5 is sucient in this case. The red curve represents the state in which
the background trac process currently resides in. Here, state 1 is for low
activity, 2 for medium activity and 3 for high activity. For this reason, we
can see that when the process is in a low activity state the bitrate selected
by the client is higher. Hence, the background curve uctuates in opposite
directions to the bitrate curves. We can observe from the gures that the

27



proposed algorithm chooses the bitrate smoothly as compared to the simple
algorithm described in section 3.5. It stays in the same bitrate for longer
time periods instead of choosing a higher bitrate and then choosing the same
rate again like the simple client. We can see in the gure that the simple
algorithm uctuates back and forth between the 1000 Mbps and 950 Mbps
bitrates but the model-based algorithm tends to choose one of these bitrates
multiple times before switching to another. As discussed in [23] and [8],
downloading each segment in the highest possible representation results in
frequent changes of playback quality whenever the dynamics of the available
throughput exhibit strong uctuations. Therefore, it is better to choose a
bitrate that will not result in too many quality uctuations. Thus, the over-
all goal of the rate adaptation algorithm should be to maximize the average
video quality but also to minimize the number of video quality shifts. Our
proposed algorithm achieves this goal. In the case of the simple algorithm
there is a transition almost every segment due to small changes in background
even though the background process stays in the same state. This means that
simple algorithm is more sensitive to bandwidth changes and reacts too often
than necessary. However, the proposed algorithm reacts quickly similar to
the simple algorithm in case of a deadline miss.

Next, we present the number of segments requested for each of the 5
available bitrates using both algorithms for a total of 100000 segments. We
can see in gures 20 and 21, that the model-based algorithm requests more
segments in the bitrate 950 Kbps while the simple algorithm is more aggres-
sive and it requests more number of segments in 1000 Kbps, which results in
a lot of uctuations.

Lastly, we report the total number of bitrate transitions between the ve
dierent bitrates requested by the client in table 1. We can see that the
simple algorithm made a lot more transitions among the dierent bitrates
as compared to the model-based algorithm. Again, this proves that the
proposed model-based algorithm chooses the bitrates wisely resulting in fewer
quality uctuations and hence better quality of experience for the viewer.

6. Conclusion

Nowadays an increasing number of video applications employ adaptive
streaming over HTTP, as it has several more benets compared to clas-
sical streaming. Its oers multiple bit rates of video that enables video
service providers to adapt the delivered video to the users’ demands. Sec-

28



Figure 18: Rate transitions for the simple and model-based algorithm using a moving

average of the last 5 segments for pest

ondly, the video bit rate can be adapted dynamically to changing network
and server/CDN conditions. Lastly, dierent service levels and/or pricing
schemes can be oered to customers. Signicant amount of work has been
done on the design of rate adaptation schemes and performance comparisons,
however, no one has modeled and studied the system analytically. In this
paper, we proposed the rst (to the best of our knowledge) analytic model for
live adaptive streaming over HTTP. The model can be used to characterize
the departure process of the IP packets from the video server. Also, using
this model we proposed a new rate control algorithm that makes less frequent
rate transitions and increases the quality of experience for the viewer.

The model is decomposed into three components, namely, the video server
model, the model of the IP network, and the client video model. In the model
of the IP network, we are basically interested in obtaining the distribution of
the spread of a segment, and the time it takes for the leading packet of the
segment to reach the client. For this, we assumed that the background arrival
process is Bernoulli. In a future extension of this paper, we hope to replace it
by a discrete-time bulk arrival process where the bulk size varies from one up

29



Figure 19: Rate transitions for the simple and model-based algorithm using a moving

average of the last 10 segments for pest

Figure 20: Number of segments requested per bitrate for the simple vs model-based algo-

rithm using a moving average of the last 5 segments for pest

30



Figure 21: Number of segments requested per bitrate for the simple vs model-based algo-

rithm using a moving average of the last 10 segments for pest

to the total number of input ports of the router. Under this assumption the
calculation of the distribution of the spread is feasible, but the calculation of
the end-to-end delay is extremely dicult. However, this can be estimated
separately for each bitrate using an extremely fast activity-based simulation
reported in [24].

31



Table 1: Total number of bitrate transitions

Algorithm Moving av-

erage win-

dow

Transitions

Model-based 5 15705
Simple 5 41055
Model-based 10 18884
Simple 10 41164

7. References

[1] Transparent end-to-end packet-switched streaming service (pss); pro-
gressive download and dynamic adaptive streaming over http (3gp-dash,
3GPP TS 26.247 (2011).

[2] S. Akhshabi, A. C. Begen, C. Dovrolis, An experimental evaluation of
rate-adaptation algorithms in adaptive streaming over HTTP, in: MM-
Sys 2011, San Jose, California, USA, 2011.

[3] I. Hofmann, N. Farber, H. Fuchs, A study of network performance with
application to adaptive HTTP streaming, in: IEEE International Sym-
posium on Broadband Multimedia Systems and Broadcasting (BMSB),
2011, pp. 1–6.

[4] C. Muller, S. Lederer, C. Timmerer, An evaluation of dynamic adaptive
streaming over HTTP in vehicular environments, in: 4th ACM Work-
shop on Mobile Video (MoVID), Chapel Hill, North Carolina, 2012, pp.
37–42.

[5] K. Miller, N. Corda, S. Argyropoulos, A. Raake, A. Wolisz, Optimal
adaptation trajectories for block-request adaptive video streaming, in:
20th International Packet Video Workshop, San Jose, CA, USA, 2013,
pp. 1–8.

[6] T. Lohmar, T. Einarsson, P. Frojdh, F. Gabin, M. Kampmann, Dy-
namic adaptive HTTP streaming of live content, in: IEEE International
Symposium on a World of Wireless Mobile and Multimedia Networks
(WoWMoM), Lucca, Italy, 2011, pp. 1–8.

32



[7] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, P. Tran-Gia,
A survey on quality of experience of http adaptive streaming, IEEE
Communication Surveys and Tutorials 17 (1) (2015) 469–492.

[8] K. Miller, E. Quacchio, G. Gennari, A. Wolisz, Adaptation algorithm
for adaptive streaming over http, in: 19th International Packet Video
Workshop, Munich, Germany, 2012.

[9] G. Tian, Y. Liu, Towards agile and smooth video adaptation in dynamic
HTTP streaming, in: International Conference on emerging Networking
EXperiments and Technologies (CoNEXT’12), Nice, France, 2012.

[10] A. Bokani, M. Hassan, S. Kanhere, HTTP-based Adaptive Streaming
for Mobile Clients using Markov Decision Process, in: 20th International
Packet Video Workshop (PV) 2013, San Jose, California, 2013, pp. 1–8.

[11] M. Xing, M. Siyuan Xiang, L. Cai, A real-time adaptive algorithm for
video streaming over multiple wireless access networks, IEEE Journal
on Selected Areas in Communication 32 (4) (2014) 795–805.

[12] A. Mansy, B. V. Steeg, M. Ammar, Sabre: A client based technique for
mitigating the buer bloat eect of adaptive video ows, in: The ACM
Multimedia Systems 2013 Conference (MMSys), Oslo, Norway, 2013, p.
214225.

[13] C. Liu, I. Bouazizi, M. M. H. M. Gabbouj, Rate adaptation for dynamic
adaptive streaming over http in content distribution network, Signal
Processing: Image Communication 27 (4) (2012) 288–311.

[14] J. Jiang, V. Sekar, H. Zhang, Improving fairness, eciency, and stability
in http-based adaptive video streaming with festive, in: CoNEXT’12,
Nice, France, 2012.

[15] T. Schierl, Y. S. de la Fuente, R. Globisch, C. Hellge, T. Wiegand,
Priority-based media delivery using SVC with RTP and HTTP stream-
ing, Multimedia Tools and Applications 55 (2) (2011) 227246.

[16] S. Oechsner, T. Zinner, J. Prokopetz, T. Hossfeld, Supporting scalable
video codecs in a P2P video-on-demand streaming system, in: The 21st
International Teletrac Congress Specialist Seminar on Multimedia Ap-
plications - Trac, Performance and QoE, Miyazaki, Japan, 2010.

33



[17] C. Sieber, T. Hossfeld, T. Zinner, P. Tran-Gia, C. Timmerer, Imple-
mentation and user-centric comparison of a novel adaptation logic for
DASH with SVC, in: First IFIP/IEEE International Workshop on Qual-
ity of Experience Centric Management (QCMan), Ghent,Belgium, 2013,
p. 13181323.

[18] N. Bouten, M. Claeys, S. Latre, J. Famaey, W. V. Leekwijck, F. D.
Turck, Deadline-based approach for improving delivery of SVC-based
HTTP adaptive streaming content, in: IEEE Network Operations and
Management Symposium (NOMS), Krakow, Poland, 2014, p. 17.

[19] S. Akhshabi, A. C. Begen, What happens when HTTP adaptive stream-
ing players compete for bandwidth?, in: NOSSDAV12, Toronto, On-
tario, Canada, 2012.

[20] T. Lohmar, T. Einarsson, P. Frojdh, F. Gabin, M. Kampmann, Inter-
actions between HTTP adaptive streaming and TCP, in: 22nd ACM
Workshop on Network and Operating System Support for Digital Audio
and Video (NOSSDAV), Toronto, ON, Canada, 2012, pp. 21–26.

[21] T. Kupka, P. Halvorsen, C. Griwodz, Performance of on-o trac stem-
ming from live adaptive segmented HTTP video streaming, in: 37th
Annual IEEE Conference on Local Computer Networks, Clearwater,
Florida, 2012, pp. 401–409.

[22] S. Tanwir, Analysis and modeling of variable bitrate video trac, Ph.D.
thesis, Department of Computer Science, North Carolina State Univer-
sity, Raleigh, NC (July 2015).

[23] M. Gra, C. Timmerer, Representation switch smoothing for adaptive
HTTP streaming, in: Proceedings of the 4th International Workshop on
Perceptual Quality of Systems (PQS 2013), 2013, pp. 178–183.

[24] B. Anjum, H. Perros, Bandwidth estimation for video streaming under
percentile delay, jitter and packet loss constraints using traces, Com-
puter Communications Journal 57 (2015) 73–84.

34


