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Abstract

We compute analytically burst blocking probabilities in an OBS switch when limited-

range wavelength conversion is employed. Two separate queueing models are proposed and

analyzed approximately; one for the case where the degree of conversion d is 1 or 2, another

for large values of d. The arrival process of bursts is assumed to be an IDLE-ON process.

The accuracy of these queueing models was tested against simulation. We show numerically

that in order to keep the burst blocking probability within an acceptable level, the utilization

of each wavelength has to be low.

1 Introduction

Optical Burst Switching (OBS) is one of the promising technologies to realize the next generation

all-optical Internet, see Battestilli and Perros [4], Baldine et al [10], and Wei and McFarland [17].

Key features of OBS that makes it an attractive technology are the promise of high throughput

and utilization, absence of O/E/O conversion for data bursts, absence of or limited usage of

optical buer at the core switches and being better suited for transmission of bursty trac.

OBS being placed between circuit switching and packet switching technologies imbibes the plus

points from either of them and is also more likely to be implemented with the present state of

physical device technologies.

In OBS, a control packet is transmitted ahead of an aggregation of data packets called

the data burst by an oset amount of time. The control packet reserves resources at the core

switches for the oncoming data burst. Several control packets may arrive at dierent input ports
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of a switch at the same time and heading to the same output port. This leads to contention for

resource possession (for eg: wavelength assignment at the output port). In case a control packet

cannot reserve resources for its oncoming data burst, the data burst gets dropped. There are

three techniques to minimize the above contention problem. They are wavelength conversion,

use of Fiber Delay Line (FDL) buers and deection routing. A combination of these three

techniques can also be employed to reduce blocking of data bursts. In the wavelength conversion

technique, if the destination wavelength in the destination port is assigned to a dierent burst

for that particular time interval, a wavelength converter is used to convert the data burst onto a

dierent wavelength at the same ber, if such a wavelength and a free converter is available. In

the FDL buer technique, an optical buer in the form of an FDL can be used to delay bursts

involved in contention and then transmitted through their original destination wavelength. In

the third technique, deection routing which involves transmitting a burst through a dierent

ber than the intended original destination ber is employed to resolve contention, see Hsu et

al [7]. Both the deected burst and its control packet then have to nd a dierent route other

than their intended original route. The oset might also have to be recalculated because of

the route change. A combination of these three techniques can also be employed to further

reduce contention and thus blockage of data bursts. Gauger [6] examined the performance of

OBS nodes which employ wavelength converter pools and FDL buers for contention resolution.

Several strategies based on dierent ordering of probing converter pools and FDL buers have

been proposed to optimize performance such as minimizing delay or the number of converters.

In this paper, we focus on wavelength conversion to reduce contention among data bursts.

We consider only the case of limited-range wavelength conversion. In limited-range wavelength

conversion, a burst arriving on a wavelength can be converted to a xed set of wavelengths

above and below the original wavelength. The degree of conversion d denes the number of

wavelengths on either side of the original wavelength. Thus, an incoming data burst can be

converted to a total of (2 ∗ d + 1) destination wavelengths. Yates et al [5] were the rst to

model a system with limited-range wavelength conversion. Until then, all the papers assumed

full-range wavelength conversion. In [5], the all-optical translators considered were based on four-

wave mixing in Semiconductor Optical Ampliers (SOA). A model was developed to analyze

the blocking performance of two-hop and multiple-hop paths in unidirectional ring and mesh-

torus networks. They also stated that almost all of the network performance gained by full-range

conversion can be attained by half the number of converters employing limited-range wavelength

conversion. Tripathi and Sivarajan [14] developed an analytical model for xed routing of

lightpaths which can be applied to any topology. They stated that the benets of full-range

wavelength conversion could be achieved by limited-range conversion with degree of conversion

being only 1 or 2. Rosberg et al [16] proposed a framework to compute the path blocking

probabilities in an OBS network. They showed that for OBS networks, even a small degree

of conversion can bring about signicant reduction in blocking. However, they also showed
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that for OBS networks, unlike previous studies which are based on acknowledgement-based

networks, full-range conversion resulted in signicantly less blocking probabilities than limited-

range wavelength conversion with small degree of conversion. The proposed framework used

a generalized form of the Erlang xed-point approximation. Akar and Karasan [2] proposed a

method to exactly calculate the blocking probabilities in an OBS switch with partial wavelength

conversion, i.e number of converters available being less than the number of wavelengths. A

numerical method was used to solve the underlying continuous time Markov process. They also

showed that their method could be used to eciently calculate blocking probabilities for very

large number of wavelengths.

Previous studies in OBS which dealt with limited-range wavelength conversion focused on

computing link blocking probabilities and path blocking probabilities, see Rosberg et al [16].

They also assumed Poisson arrivals for their model. In this paper, we focus on a single OBS

switch and we assume sources to be of ON-OFF nature.

We develop an analytical model to determine the blocking probabilities for bursts in a core

OBS switch which employs limited-range wavelength conversion to resolve contention among

bursts. We assume the absence of FDLs and deection routing. The blocking probabilities

obtained from this queueing model are approximate. We propose a product-form solution from

which blocking probabilities can be computed for large number of wavelengths, w, but only for

d = 1, 2. We then develop a large scale approximation technique which can be applied to large

values of w and d.

The paper is organized as follows: Section 2 describes the architecture of the core OBS

switch that we have assumed for our model. In Section 3, we present an approximate queueing

model for limited-range wavelength conversion for the case of small d. In Section 4, we describe

an approximate model for large w and d. In Section 5, we compare the outputs of our analytical

models with simulation results, and in Section 6, we draw conclusions.

2 The switch

The components of a core OBS switch we use in our model are depicted in gure 1. The switch is

comprised of k incoming and k outgoing bers, the switching fabric and wavelength converters.

Such a switch can be implemented using several architectures, see for instance Xiong et al [15],

Qin and Yang [12], and Ramamirtham and Turner [13]. Each output ber has a set of wavelength

converters, c, that can be used by bursts traveling out of that particular ber. The bandwidth

in each ber is partitioned into several wavelengths, w, using Wavelength Division Multiplexing

(WDM).

In this paper, we only model a single output ber with its own set of wavelength converters.

Each outgoing wavelength li, i = 1, 2, . . . , w, has k number of incoming wavelengths, li, one per
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Figure 1: Switch Architecture

input ber, targeted into it. Part of the bursts arriving in each of the k input wavelengths li, is

switched to the destination wavelength li of the output ber under study. The remaining bursts

are switched through other output bers. An incoming burst on li will try to be scheduled on its

home wavelength li in the outgoing ber. In case the home wavelength is busy, the burst tries to

occupy adjacent wavelengths in the range (li − d, li + d), if a converter in the common converter

pool per output ber is available. The method of trying to occupy an alternate wavelength

within the range (li − d, li + d) will be explained in the analytical model section.

3 The Queueing model for small d

Let us consider the birth-death process for limited-range wavelength conversion shown in gure

2. The gure shows all the possible transitions for a system consisting of 3 wavelengths with

d = 1 and c = w. A Poisson arrival process to each wavelength is assumed with a rate λ. A

burst arriving on the middle wavelength can be converted to either ones on its side provided they

are free. For the border wavelengths, the bursts can undergo wavelength conversion only to the

middle wavelength. Each state is depicted by (Si, Sj , Sk), where Sx is either 0 or 1, indicating

the occupancy of the server x. The Markov process is governed by the following set of equations:

3λP000 = µP100 + µP010 + µP001

(2λ+ µ)P001 = λP000 + µP101 + µP011

(2λ+ µ)P010 = λP000 + µP110 + µP011

(λ+ 2µ)P011 = λP010 + µP111 + λP001
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Figure 2: Birth-Death process for limited-range conversion (w = 3, c = 3, d = 1)

(2λ+ µ)P100 = µP110 + µP101 + λP000

(λ+ 2µ)P101 = λP100 + λP001 + µP111

(λ+ 2µ)P110 = λP100 + λP010 + µP111

3µP111 = λP110 + λP101 + λP011

It can be seen that the above equations do not satisfy local balance. Thus, the Markov

process for limited-range wavelength conversion does not have a product-form solution. In view

of this, we propose a queueing model with simultaneous resource possession which is solved

approximately in order to compute the blocking probabilities in an OBS switch with limited-

range wavelength conversion.

Let us consider an example with w = 3, c = 3 and d = 1. Figure 3 depicts the decomposition

of this system with w = 3 and d = 1 into three sub-systems n1,n2 and n3 each being an Erlang

loss queue. The number of sub-systems is equal to the number of wavelengths w. Each sub-

system ni has a home wavelength λi and neighboring wavelengths into which a burst coming on

the home wavelength can be converted into. We represent each wavelength with a server. Thus,

the number of servers in each sub-system ranges from (d + 1) to (2 ∗ d + 1). The border sub-

systems n1 and n3 have two servers and the central sub-system n2 has three servers. The state

of each server is represented by ni,j≤{0, 1}, where i is the sub-system and j is the wavelength.

Thus, n1 = {n1,1, n1,2}, n2 = {n2,1, n2,2, n2,3} and n3 = {n3,2, n3,3}.
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The state of the system is given by the union of states of servers in all the sub-systems

combined. Thus, for the three node example, the state of the system is represented by the tuple

(n1, n2, n3) = (n1,1, n1,2, n2,1, n2,2, n2,3, n3,2, n3,3).

Let p(n1, n2, n3) be the probability of the system being in one such state. Then, we have

p(n1, n2, n3) =
1

G
∗ p(n1) ∗ p(n2) ∗ p(n3) (3.1)

or,

p(n1,1, n1,2, n2,1, n2,2, n2,3, n3,2, n3,3) =
1

G
∗ p(n1,1, n1,2) ∗ p(n2,1, n2,2, n2,3) ∗ p(n3,2, n3,3) (3.2)

where G =


p(n1) ∗ p(n2) ∗ p(n3) summed over all feasible states.

The set of feasible states is computed using the following two rules:

Rule 1 : A wavelength server can be occupied in only one sub-system

Rule 2 : The number of conversions cannot exceed c

Thus we have the following constraints:

n1,1 + n2,1 = 1 (3.3)

n1,2 + n2,2 + n3,2 = 1 (3.4)

n2,3 + n3,3 = 1 (3.5)
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n1,2 + n2,1 + n2,3 + n3,2 ≤ c (3.6)

The wavelength occupancy constraint (Rule 1 ) and the converters constraint (Rule 2 ) reduce

the state space from which the solution is computed. The computation of the individual sub-

system probabilities p(nx), where x≤{1 . . . w} will be explained in the sub-section 3.2.

When we generalize our model to any number of wavelengths w, we have,

p(n1, n2, n3, . . . , nw) =
1

G
∗ p(n1) ∗ p(n2) ∗ p(n3) ∗ . . . ∗ p(nw) (3.7)

The model is further decomposed so as to include the constraints of wavelength occupancy

and the number of available converters. Each subsystem thus becomes:

ni = (ni,i−d, ni,i−d+1, ..., ni,i, ...., ni,i+d−1, ni,i+d) (3.8)

and in ni,j , i,j ≤{1 . . . w}

We have the following constraints:

ni,i−d + ni,i−d+1 + . . .+ ni,i−1 + ni,i + ni,i+1 + . . .+ ni,i+d−1 + ni,i+d = 1∀i≤(1 . . . w) (3.9)

i=w,j=i+d∑

i=1,j=i−d,j≥1

ni,j ≤ c (3.10)

We note that the approach described above is similar in spirit to the analysis of circuit-

switched networks, see for instance Alnowibet and Perros [3]. The computation of G is a

complicated task because of the state space explosion with large values of w and d. We shall

describe the approach we take for the computation of G in sub-section 3.3. Once the probability

of the system existing in each state has been determined, the blocking probability of each

wavelength is then the sum of all the corresponding blocking states.

3.1 The Arrival process

We use the IDLE-ON arrival process shown in gure 4 to generate bursts on a single incoming

wavelength li. The IDLE and ON periods are exponentially distributed with a mean of 1

ν
and

1

µ
respectively. A single ON period generates a single burst. An IDLE period is followed by the

ON period and vice-versa. If a burst is dropped, the source returns to the IDLE state. Since

there are k input bers, the burst arrival process from all the k incoming wavelengths li is the

superposition of k single IDLE-ON sources as shown in gure 4(b). We assume that all the k

arrival IDLE-ON sources are identical.

As described in section 2, we are modeling a single output ber. Each wavelength in the ber

will only have some of the trac directed towards it from its k corresponding input wavelengths.
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Consequently, the IDLE period is assumed to have been appropriately extended so that only the

bursts destined to the outgoing wavelength in the ber are modeled. In this paper, we assume

that the appropriately extended IDLE period is given.

3.2 Computing the state probabilities for each sub-system

Figure 5 depicts the birth-death process for a single sub-system. The sub-system has 3 wave-

lengths with degree of conversion d = 1, c = 3 and the arrival process is assumed to be Poisson.

On arrival, a data burst tries to occupy the middle wavelength which is its home wavelength. If

the home wavelength is busy, with equal probability the burst tries to occupy one of the adjacent

wavelengths. The following set of equations govern the process.

λP000 = µP100 + µP010 + µP001

(λ+ µ)P001 = µP101 + µP011

(λ+ µ)P010 = λP000 + µP110 + µP011

(λ+ 2µ)P011 = λ/2P010 + µP111 + λP001

(λ+ µ)P100 = µP110 + µP101

(λ+ 2µ)P101 = µP111

(λ+ 2µ)P110 = λP100 + λ/2P010 + µP111

3µP111 = λP110 + λP101 + λP011

The state probabilities can be derived from the above set of equations and it does not have

a closed-form expression. On increasing the values of w and d, it gets dicult to solve a Markov
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Figure 5: Birth-Death process for a single sub-system (w = 3, c = 3, d = 1)

chain for each sub-system. We note that if we assume that on arrival a burst occupies any free

server randomly selected, the above system becomes an Erlang or an Engset system depending

on whether we assume a Poisson or IDLE-ON arrival process. This gives rise to a product-form

solution which is an approximation to the probability terms p(nx) in equation 3.7.

In equation 3.2, the probability terms on the right hand side are determined using the Engset

model. If n is the number of servers, k the number of input bers and µ, ν are as described in

the arrival process, the probability that there are i customers in such a M/M/n/n/k system is

given by:

π
∗
i =

(

k−1

i

)

( ν
µ
)i

n
j=0

(

k−1

j

)

( ν
µ
)j

(3.11)

The state probabilities given by equation 3.11 are those as seen by an arrival.

The probability that a specic set of i servers is occupied in a sub-system is given by:

πi =
π
∗
i

(

n
i

) (3.12)

The product of such probability terms for all sub-systems, if the state is valid, can be added

to compute G, see equation 3.7. The blocking probability of a particular wavelength is nally

computed by summing up all the appropriate blocking states.
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3.3 Computation of G

We now describe the approach taken to compute the normalization constant G.

Let us construct a resource allocation matrix to represent the sub-systems. An example of

such a matrix is shown in gure 6, assuming that w = 7 and d = 1. The matrix shows the

wavelengths represented in each sub-system indicated by the symbol
√
. There are as many sub-

systems as the number of wavelengths. The symbol
√

assumes the value of 1 if the wavelength

is used in the corresponding sub-system. Otherwise, it is zero. Thus, each column can have a

single 1. Further, to impose the number of converters constraint, the sum of all non-diagonal

elements cannot exceed the number of available converters. Using this matrix, it is easy to

visualize the state space constraints 3.9 and 3.10.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Wavelengths

Sub−Systems = 1/0

Figure 6: Resource Allocation Matrix

By brute-force enumeration, it takes O(ww) to cover the entire state space and determine

the blocking probabilities for each wavelength. It is clear that brute-force enumeration cannot

be used to compute G for large values of w and d. This approach can be used for d = 1, 2

and very small values of w. For larger values of d, we propose the large scale approximation

technique described in section 4.

3.4 Large number of wavelengths

In this section, we describe a method for computing the blocking probabilities for large number

of wavelengths, and d = 1, 2.

As was described in section 3.3, we can compute G by brute-force enumeration only for

very low values of d and w. However, there are some properties of the blocking probabilities

with increasing number of wavelengths that we can make use of in order to compute blocking

probabilities for these large systems.

Figure 7 plots the simulation results for the blocking probability of the middle wavelength

with increasing number of w in the system. The number of converters is set to 33% of the
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Figure 7: Proportional use of converters

number of wavelengths and it increases proportionally with the number of wavelengths. It can

be seen that with increase of w, there is a very small gradual decrease in the blocking probability.

It can also be seen that the trend is similar for dierent arrival rates. We assume an identical

superimposed arrival process to each wavelength.

Figure 8 plots the simulation results for the blocking probabilities for all the wavelengths

in the system, for two dierent cases. We assume that each wavelength is fed by the same

superposition arrival process. It can be seen that the border wavelengths have the highest

blocking since the degree of conversion is smaller for them compared to the center wavelengths.

In the following sections, we focus only on the blocking probability of the middle wavelength.

For a more detailed discussion on the blocking probabilities of all wavelengths in the spectrum,

the reader is referred to appendix A of [11]. Here, we also assume symmetric trac wherein

each wavelength is fed by the same arrival process resulting in the same arrival rate.

3.5 The four-point method

Figure 9(a) gives another plot of the simulation results for the blocking probability of the middle

wavelength with increasing number of wavelengths. It should be noted that the graphs in gures

7 and 9(a) represent the same trend, except that the range of system size w shown is dierent.

When w is small, the blocking probabilities are extremely sensitive to the eect of lesser number

of servers available for the border wavelengths. As w increases, this eect decreases rapidly

initially and then gradually. These two trends can be seen in the gure 9(a) and only the
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gradual decrease can be seen in gure 7.

We note that from gure 9(a) that the distribution is very similar to the exponential distri-

bution. In the four-point method, we use the brute-force enumeration described in section 3.3

to calculate the initial 4 points on the curve. We then use these points to determine the value

of the plateau P of the curve, see gure 9(b).

Let (x0, y0), (x1, y1), (x2, y2) and (x3, y3) be the initial 4 points on the curve. y0, y1, y2 and

y3 can be calculated by brute force. The size of the systems is (2∗d+1), (2∗d+3), (2∗d+5) and

(2∗d+7) respectively. A one phase exponential decay function with the initial 4 points is tted

(see Motulsky and Christopoulos [8]) from which the value of P , i.e the blocking probability for

large number of w and for d = 1, 2, can be obtained.

4 Large scale approximation

θM / M / c / c / (2*d+1)*k*

M / M / (2*d+1) / (2*d+1) / (2*d+1)*k

Server Bottleneck

Coverter Bottleneck

θ(2*d+1)*k*  Customers (2*d+1)*k  Customers

Figure 10: Large scale approximation

The methods discussed in section 3 can only be applied for d = 1, 2. In this section, we

describe an approximate model for large d. The schematics of the model is as shown in gure

10.

The system is decomposed into two loss queues. The rst one is referred to as the server

bottleneck and the second one as the converter bottleneck. The server bottleneck queue is used to

determine the blocking due to lack of servers, i.e. wavelengths, for a given d, and the converter

bottleneck queue is used to determine blocking due to lack of converters for a given c. The

server bottleneck and the converter bottleneck queues are analyzed separately and independence
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is assumed between them.

Figure 11 shows the transformation of the server bottleneck from limited-range conversion

to full-range conversion. The gure on the left hand side is similar to the resource allocation

matrix shown in gure 6. The group of
√

symbols has been replaced by a band. A burst arriving

on wavelength li can be converted into any wavelength within the band on its horizontal axis.

Intuitively, it could be seen that if this band covered the complete square which results in full-

range conversion, a lower bound could be achieved for the blocking probabilities. However, such

a lower bound will not be very tight. Supposing, we consider a smaller system size for full-range

conversion, the increase in blocking probabilities due to this system size transformation could be

compensated by the decrease in blocking probabilities due to the transformation from limited-

range conversion to full-range conversion. In essence, limited-range wavelength conversion for

the entire number of wavelengths w can be modeled by full-range wavelength conversion for a

smaller set of wavelengths. The blocking probabilities are thus approximate and only an average

blocking probability can be determined with this approach. Such a system size was found to be

close to 2∗d+1 wavelengths. The full-range conversion scenario is shown in the right hand part

of gure 11. Simulation results of gure 12 conrms the validity of such a transformation. It

has to be noted that the y axis denotes the average blocking probability of all the wavelengths.

We use the same superposed arrival process to each wavelength as was described in section 3.1.

The server bottleneck queue is modeled by an Engset system M/M/(2 ∗ d + 1)/(2 ∗ d +

1)/((2 ∗ d+ 1) ∗ k). The converter bottleneck queue is also modeled as an Engset system. But

the percentage of (2 ∗ d + 1) ∗ k customers, θ, that have to use the converter pool needs to be

determined. This can be determined approximately as follows. The probability that an arriving

burst uses a converter is equal to the probability that the burst’s wavelength is busy, which is

equal to the blocking probability in an M/M/1/1/k system, pBlocking(M/M/1/1/k). Therefore,
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Figure 12: Full-range conversion

θ is set equal to pBlocking(M/M/1/1/k). Thus, the Engset system for the converter bottleneck

becomes M/M/c/c/d(2 ∗ d+ 1) ∗ k ∗ θe.

Let pBs and pBc be the blocking probabilities at the server bottleneck queue and the converter

bottleneck queue. Then, because of the independence assumption, the probability that a burst

gets blocked is given by:

pB = 1− (1− pBs)(1− pBc) (4.13)

4.1 Case of No conversion and Full-range conversion cases

For the case of no conversion, the blocking probability of each wavelength is given by:

pNo−conversion = pBlocking(M/M/1/1/k) (4.14)

For full-range conversion, the blocking probability of each wavelength is given by:

pFull−range−conversion = pBlocking(M/M/w/w/(w ∗ k)) (4.15)

4.2 Utilization

As shown above, the server bottleneck queue and the converter bottleneck queue is each analyzed

as an Engset system as shown in gure 13. The users will either be in the rst set of servers

(N of them) during which time they are idle. The users are busy when they are in the second
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Figure 13: The Engset System

set of servers (n of them). The service rates are ν and µ for the rst and second set of servers

respectively. The probability that a user gets blocked at the second set of servers is pB.

Let p1(i) and p2(i) be the probabilities of having i customers in the rst and second set of

servers respectively. Then, the server (or wavelength) utilization is:

∪ = (
λ
∗

n
)(
1

µ
)

where

λ
∗ = λ(1− pB)

and

λ = [
k∑

j=0

j ∗ ν ∗ p1(#customers = j)]

Thus,

∪ =
[
N

j=0
j ∗ ν ∗ p1(#customers = j)] ∗ (1− pB)

n
∗ 1

µ
(4.16)

5 Results

An event based simulation model was constructed to evaluate the accuracy of the results of the

analytical model. The simulation results were plotted with 95% condence interval estimated

by the method of batch means, see Perros [9]. Each batch is completed when every wavelength

has 30,000 bursts arriving at it. The condence intervals are very tight and are not discernible

in the graphs. A software called GraphPad Prism [1] was used to t a one phase exponential

decay function with the initial 4 points as described in the four-point method.
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Figure 14: Blocking vs No. of Fibers for d = 1

The blocking probability of the center wavelength was calculated by varying ν (which varies

the arrival rate), the number of bers k, the degree of conversion d, and the number of wave-

lengths w. Both analytical results and simulation results have been plotted. We use the four-

point method for d = 1, 2 and the large scale approximation for larger d.

Figure 14 plots the blocking probability of the middle wavelength with increasing number of

bers k for w = 30, d = 1, ν = 0.073, c = 20% and w = 30, d = 1, ν = 0.041, c = 40%. The

number of input wavelengths that can source trac to a particular wavelength has to be greater

than 2 ∗ d+1 (condition for an Engset system). Thus, k ≥ 4 in the graph. We observe that the

analytical model provides higher blocking probabilities than the simulation results.

Figure 15 plots the blocking probabilities with increasing arrival rate (by increasing ν) for

w = 30, k = 8, d = 1, c = 20% and w = 30, k = 12, d = 1, c = 30%. Here too, it can be seen

that the analytical values are above the simulation values.

In gures 16, 17 and 18, we plot the blocking probabilities for varying k, c and ν for d = 2.

The way we take the initial 4 points diers for d = 2. To get the fourth point, we have to

consider a system of size (2 ∗ d + 7) = 11. By brute-force enumeration, it is not possible to

explore all the states of such a system within reasonable time. So, we get the fourth point via

simulation, which takes far lesser time. We note that the analytical values are much closer to

the simulation ones than in the case of d = 1. However, the range for good values seem to be

between 10−1 and 1.

We now plot the blocking probabilities for large values of d and w using the large scale
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Figure 15: Blocking vs ν for d = 1
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Figure 16: Blocking vs No. of Fibers for d = 2
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Figure 17: Blocking vs % conversion for d = 2
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Figure 18: Blocking vs ν for d = 2
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Figure 19: Blocking vs No. of Fibers for large systems

approximation method described in section 4.

Figure 19 plots the average blocking probability with increasing number of bers ranging from

20 to 100 for w = 100, d = 15, ν = 0.007, c = 30% and w = 200, d = 30, ν = 0.01, c = 20%. The

average blocking probability is the sum of blocking probabilities of all the wavelengths divided

by the number of wavelengths. It has to be noted that the large scale approximation technique

of section 4 computes the average blocking probability. The analytical values are close to the

simulation results.

Figures 20, 21, 22 plot the average blocking probability with increasing arrival rate (by

increasing ν), increasing percentage of conversion, increasing degree of conversion d respectively.

As was mentioned for d = 1, 2, increasing d decreases the blocking probabilities when the

probability range is very low. This also applies to large systems as can be seen from gure 22.

Thus, increasing d is most eective at low blocking probabilities which can be due to low arrival

rate and/or high percentage of conversion. After a certain value of d, larger values do not have

an impact on blocking. In this case, it seems that blocking is predominantly due to the lack of

converters.

Figure 23 plots the average blocking probability versus utilization for an outgoing wavelength.

It can be seen that the link has to be run at very low utilization in order to have a low blocking

probability.
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Figure 20: Blocking vs ν for large systems
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Figure 21: Blocking vs % conversion for large systems
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Figure 22: Blocking vs Degree of conversion (d) for large systems

6 Conclusion

In this paper, we proposed an approximate solution for limited-range wavelength conversion in

an OBS switch. The problem was modeled as a simultaneous resource possession problem and

an approximate product-form solution was proposed. This solution could be applied for very

small values of w and d. A method called the four-point method extended the solution for larger

values of w. We then proposed a large scale approximation technique which calculated average

blocking probabilities for very large values of w and d. d has signicant impact on blocking

for high percentage of converters available and/or low arrival rate. For small values of partial

conversion (c < w), the benets of d saturates very early and large values of d may not be useful.

To achieve signicantly low blocking of bursts, the utilization has to be kept at very low levels.
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