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We propose an analytical method of calculating the burst loss probabilities in
a tandem Optical Burst Switched (OBS) network with a bursty arrival process.

We model the bursty arrival process as an Interrupted Poison Process (IPP)

and thus we are solving a tandem network of IPP/M/W/W loss nodes. We
show how any trac stream can be approximated as an IPP. Our performance

evaluation of an OBS network shows that our analytical method approximates

simulation results better than a Poisson arrival process.

1. Introduction

Most of the analytical models of Optical Burst Switched (OBS) Networks

focus on a single OBS node. These models provide a limited insight about

the overall performance of an OBS network. An analytical model of an

OBS network is proposed in [1], where the OBS network is modeled by a

network of loss nodes, each representing a link of W wavelengths. Bursts

are assumed to arrive in a Poisson fashion and each burst occupies a single

wavelength on each link along its source-destination path until it is lost or

until it departs from the network.

Typically, the Poisson process is used to model the arrival trac to

a network because it is mathematically tractable. However, the Poisson

process is smooth and the burst loss calculated is lower than for a more

realistic bursty trac. The term bursty trac is not OBS specic and it
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(a) OBS Network Under Study (b) Interrupted Poisson

Process

Figure 1.

does not refer to the fact that the arrival process is made of data bursts.

In any network, the trac is considered bursty if a large number of arrivals

are followed by long idle periods.

The focus of this paper is the end-to-end performance evaluation of

an OBS network with bursty trac, where the bursts dynamically acquire

and release wavelengths from link to link as they travel from their source

to their destination. We use methods from teletrac theory to obtain

analytical results.

This paper is organized as follows. In Section 2 we describe the network

under study and the proposed queueing network model. In Section 3 we

set the bursty arrival process to be an Interrupted Poisson Process (IPP).

In Section 4, we characterize the departure process from a loss node with

IPP arrivals and exponential holding times. In Section 5 we show how any

trac stream can be approximated with an IPP. In Section 6 we propose an

algorithm for analytically obtaining the blocking probabilities in an OBS

transmission path with IPP arrivals. We conclude in Section 7.

2. Network Under Study

We study an OBS network, where the nodes are built from an Optical

Cross Connect (OXC) and an electronic control unit. Two adjacent network

nodes are linked by a single WDM link (ber), which hasW+1 transmission

wavelengths. The rst W wavelengths are used for burst transmission while

the (W + 1)st wavelength is used to transmit control information. Each

OBS node has a full wavelength conversion capability, i.e., in the case of

contention at an output port it can optically convert an optical signal from

one wavelength to another. There are no ber delay lines available at the

network nodes and thus a burst is lost if it arrives at an output port where
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all the wavelengths are busy.

In this OBS network we analyze the performance of a specic source-

destination transmission path, made of K links. Therefore, we consider

(K + 1) network nodes connected in tandem, as shown in Figure 1a. We

consider the trac ow from left to right. The end-devices, linked to OXC

1, transmit bursts to a number of end-devices, linked to OXC (K +1). We

refer to the trac generated from the transmitting end-devices as the cross

trac. In addition, to the cross trac we consider trac generated by other

sources in the OBS network. This trac arrives at the intermediate links

of the considered path. We refer to this trac as the local burst trac.

The local trac is routed toward the same destination end-devices as the

cross trac.

This OBS network can be modeled as a tandem queueing network of

IPP/M/W/W loss nodes, where each loss node represents one of the WDM

links. We assume bursty arrival process, which we describe in Section 3.

3. Interrupted Poisson Process

For the bursty arrival process we choose a 2-state Markov Modulated Pois-

son Process (MMPP), which modulates between two exponentially dis-

tributed states, an ON and an OFF state. The transition rates for the

ON and OFF states are respectively φ and ψ, see Figure 1b. While in the

ON state, the process generates Poisson arrivals with rate λon whereas in

the OFF state there are no burst arrivals. This process is known as the In-

terrupted Poisson Process (IPP). Intuitively, an IPP is bursty because the

arrivals are batched together during the ON period and no arrivals occur

during the OFF period. The IPP becomes burstier when long OFF periods

are followed by short ON periods with a large arrival rate λon. An IPP is

uniquely characterized through the parameters φ, ψ and λon.

3.1. Interarrival Time Description of an IPP

We rst characterize the burstiness of an IPP trac by using the interarrival

time. We calculate the squared coecient of variation c2, which is the ratio

of the variance to the squared mean of the interarrival time. The c2 is a

dimensionless number that represents the relative variation of interarrival

times about the average. A small c2 represents interarrival times that

concentrate mostly around the mean. For a Poisson process the c2 is equal

to 1. For an IPP the c2 is always greater than 1 if φ > 0 [2]. The mean,

variance and c2 of an IPP are ( see [3]):
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mean =
φ+ ψ

λonψ
, var =

2λonφ+ (φ+ ψ)2

(λonψ)2
, c2 = 1 +

2λonφ

(φ+ ψ)2
.

In addition, we dene the coecient of burstiness r of an IPP to be the

ratio of the average ON time to the sum of the average ON and OFF time:

r =
1/φ

1/φ+ 1/ψ
=

ψ

ψ + φ
, 0 < r < 1. (1)

An IPP is more bursty if r is close to 0 and it gets less bursty as r approaches

1.

Let us denote the IPP average arrival rate with λavg = 1/mean. Now

given λavg, c2 and r we dene an unique IPP and determine its three

parameters:

λon =
λavg

r
, φ =

2λavg(1− r)2

r(c2 − 1)
, ψ =

2λavg(1− r)

c2 − 1
, c2 > 1. (2)

We have simulated IPP a number of times and observed that, as ex-

pected, the IPPs with higher c2 have higher blocking probability.

3.2. Innite Server Description of an IPP

We now describe an IPP process using the Innite Server Eect (ISE)

principle from teletrac theory. Using the ISE principle, a trac stream is

oered to an innite-server system in order to calculate the mean number

m and the variance v of the number of busy servers. Using the work of of

A. Kuczura [4], we obtain that:

m = M1 = λon

(

ψ

φ+ ψ

)

, v = λ2

on

(

ψ + 1

φ+ ψ + 1

)(

ψ

φ+ ψ

)

−m2+m. (3)

4. Departure Process from an IPP/M/W/W Loss Node

Next, we characterize the departure process from an IPP/M/W/W loss

node, shown in Figure 2. An IPP process, characterized by its min and

vin, is oered to loss node 1 which has W servers. Using the ISE principle,

the departure process from loss node 1 is then oered to the innite server

node 2 in order to estimate its mout and vout.

Our method of characterizing the departure process from an

IPP/M/W/W loss node follows the Rajaratnam and Takawira [5,6] ap-

proach. Let us begin by dening the joint probability distribution pa,w,c,
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Figure 2.: Departure Process from an IPP/M/W/W loss node

where (1) a is the state of the IPP, a = 1 is for the ON state and a = 0

is for the OFF state (2) w, 0 ≤ w ≤ W , is the number of busy servers in

node 1 (3) c, 0 ≤ c < ∞, is the number of busy servers in node 2.

Figure 3.: Transition Rate Diagram for pa,w,c

The rate transitions for any state of this distribution are shown in Figure 3.

The partial binomial moments of this probability distribution given by

the expression ( see [2] ):

βawj =

∞
∑

c=j

(

c

j

)

pa,w,c, a = 0, 1; 0 ≤ w ≤ W (4)

and the jth binomial moment is βj =
W

w=0
[β1wj + β0wj ] .

Therefore, the rst binomial moment is

β1 =
W
∑

w=0

[

∞
∑

c=1

c (p1wc + p0wc)

]

= mout.

The second binomial moment is:

β2 =
W
∑

w=0

[β1w2 + β0w2] =
1

2

W
∑

w=0

[

∞
∑

c=1

c2 (p1wc + p0wc)−
∞
∑

c=1

c (p1wc + p0wc)

]

and vout = 2β2 − β2

1
+ β1.
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So, in order to compute mout and vout, we only need to determine β1

and β2. We have found that these two parameters are given by (see [7] for

details):

β1 =
W
∑

w=0

w(β1w0 + β0w0) and β2 =
1

2

W
∑

w=0

w(β1w1 + β0w1)

For β1 we need β1w0 and β0w0. We have that β1w0 =


∞

c=0



c

0



p1wc, which

is simply the steady-state probability that there are w busy wavelengths

in node 1 and the IPP is in the ON state. Similarly, β0w0 is the steady

state probability that there are w busy wavelengths in node 1 and the

IPP is in the OFF state. So, in order to nd β1 we need the steady-state

probabilities of node 1. If we consider only node 1, the corresponding

probability distribution is pa,w, a = 0, 1 and 0 ≤ w ≤ W . The transition

rate diagram for node 1 is shown in Figure 4. We solve for the steady-state

probabilities at node 1 numerically. There is a total of 2(W +1) states and

thus the numerical solution requires multiplication of the 2(W+1)×2(W+1)

rate matrix.

Figure 4.: Transition Rate Diagram for an IPP loss node

Next, we nd β2 numerically by solving for βaw1, a = 0, 1; 0 ≤ w ≤ W ,

using the modied system of local balance equations. Now, that we have

β1 and β2 we can calculate mout and vout of the departure process.

5. Modeling Any Trac Stream with a Given m and v as

an IPP

Any trac stream with a given m and v can be modeled by an IPP. In [4],

Kuczura presents a three-moment match and a two-moment match for mod-

eling any trac stream as an IPP. In this paper, we use the two-moment

match. An IPP has three parameters but we only set the rst two moments
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and thus it is necessary to x one of the parameters φ, ψ or λon. Kuczura

uses the Equivalent Random Method (ERM) [8] from teletrac theory, also

known as the Wilkinson’s method [9]. Using Rapp’s approximation [10] we

rst set λon to be:

λon = v + 3
v

m

 v

m
− 1



. (5)

then the other two IPP parameters can be obtained by:

φ =

(

λon

m
− 1

)

ψ, ψ =
m

λon

(

λon −m
v
m

− 1
− 1

)

.

6. The Algorithm

Now, let us recall the problem at hand, i.e., IPP bursty arrivals oered to

an OBS path with large number of W wavelengths per link. We begin with

node 1. The arrival trac to node 1 is an IPP with given c2
1
, r1 and λavg1

and we obtain m1 and v1. Next, we solve for the steady state probability

π1 numerically from which we can also calculate the blocking probability

at node 1. In order to estimate the arrival process to node 2, we then need

to characterize the departure process from node 1, i.e., calculate mout
1

and

vout
1

. This is done using the technique from Section 4. Assuming that the

local arrivals at the intermediate links are also bursty, we model them also

with an IPP characterized by c2loc, rloc and λavgloc. Again, mloc and vloc
are obtained using (3). Therefore, the arrival rate to node 2 is

m2 = mout
1

+mloc, v2 = vout
1

+ vloc,

where the variances are added since the cross trac and the local trac

are independent.

Next, we construct the IPP arrival process to node 2 that corresponds

to a trac stream characterized by the ISE parameters m2 and v2. Now,

we can solve numerically for the steady state probabilities at node 2, i.e,

π2. The blocking probablity at node 2 can be obtained from π2. The same

steps are repeated for the rest of the nodes in the queueing network.

In [7] we provide an extensive numerical study to illustrate that, if the

arrival process is bursty, our analytical algorithm produces results for the

burst loss probabilities better than a simple Poisson approximation.
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7. Conclusions

In this paper, we presented a novel analytical approach for the analysis

of a tandem OBS network, assuming that bursts arrive according to an

Interrupted Poisson Process (IPP). The queueing network was analyzed by

a single-node decomposition, whereby each node was studied in isolation as

a loss node with an IPP arrival, i.e., as an IPP/M/W/W node. Based on our

numerical experiments, we found that if the arrival process is characterized

as bursty, our analytical algorithm approximates the burst loss probabilities

better than a simple Poisson approximation.
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