
1

QoS-based multi-domain routing under

multiple QoS metrics

Derya Yiltas and Harry Perros

Computer Science Department

NC State University

Raleigh, NC 27511, USA

{dyiltas, hp}@csc.ncsu.edu

Abstract

Applications such as voice and video require network paths that satisfy several different quality

of service QoS metrics, such as delay, jitter, packet loss rate, and availability. The calculation of

paths under multiple QoS metrics, such as the above four metrics, is a difficult problem since

these metrics are in general incompatible. We propose a simple method for combining the above

four QoS metrics into a single composite QoS metric which can be used as a link cost in

Dijkstra’s algorithm in order to calculate a path. We evaluated the proposed method in a multi-

domain routing environment where domain reachability information is available through a

Service Oriented Architecture paradigm, and we show that it outperforms two commonly used

methods. The results are also applicable to routing within a single domain.

2

1. Introduction

The advent of the Next Generation Networks (NGN) and its emphasis on QoS capable transport

networks has brought to prominence the need for connections with QoS guarantees. NGN

services will require a seamless connectivity between heterogeneous networks operated by

different Internet service providers (ISPs). Consequently, the issue of how to establish a

connection with QoS requirements across multiple domains operated by different operators has

become an important and challenging research topic.

The issue of multi-domain routing under QoS constraints has been addressed in the open

literature. Yannuzzi et al [1] gave an overview of the technical challenges in finding QoS-

constrained multi-domain disjoint paths. The primary challenging problems are domain visibility

and scalability of domain representation. A possible solution to this problem is to assume some

type of topology aggregation, such as PNNI which was defined in the early 1990s for ATM

networks. Several recent studies have addressed different aspects of domain aggregation. For

instance, Griffin et al [2] and Xiao et al [3] extended BGP to carry aggregated QoS information,

Verdi et al [4] proposed link virtualization to facilitate QoS-enabled inter-domain routing, and

Sarangan et al [5] studied capacity-aware state aggregation for multi-domain QoS routing. Manvi

and Venkataram [6] used a network management approach where network nodes are equipped

with agents that provide QoS information including bandwidth, delay, jitter, and packet loss rate

for each link to a routing manager. Using this scheme, they showed that bandwidth utilization and

call success ratios improved. Yen et al [7] used battery energy along with bandwidth and delay in

their multi-constrained QoS routing protocol for mobile ad hoc networks.

IETF established the Working Group “Path Computation Element” (PCE), see Farrel et al [8],

in order to address the issues of multi-domain routing. PCE has proposed an architecture where

each domain has one or more PCE in charge of constrained path computation within a domain.

3

PCEs belonging to different domains communicate with each other in order to establish a path

across multiple domains. A comparison of different PCE-based routing schemes can be found in

Geleji et al [9] and Geleji and Perros [10].

An alternative approach to multi-domain routing under QoS constraints is based on the

Service Oriented Architecture (SOA). Network operators post their available connectivity along

with price and QoS guarantees in a service directory. A separate entity accesses this directory in

order to select a set of appropriate connections for an end-to-end path, see Williams [11], and

Verdi et al [4].

The problem of path computation under multiple QoS metrics has been studied in the

literature. Let us consider a packet switched network, and let each link i be associated with K

different metrics mik, k=1,2,...,K. Let wk(p) be the total value of metric k for a given path p, and let

Ck be the bound of the path constraint for metric k, i.e., wk(p)≤Ck, k=1,2,...,K. Jaffe [12]

considered two different metrics per link and proposed a weighted combination of these two

values to form a single metric. Let w1(i) and w2(i) be the values of metric 1 and 2 for the ith link.

Then, the combined metric per link was obtained using the expression d1w1(i)+d2w2(i), where d1

and d2 are two metric-dependent weights given by the expression d2/d1 = (C1/C2)
1/2
, where C1 and

C2 are the bounds of the path constraints for metric 1 and 2 respectively. Using this link

composite metric, Dijkstra’s algorithm is then used to calculate the optimum path. De Neve and

Van Mieghem [13] used the following function to describe the total cost of a path

max
w
1
(p)

C
1

,
w
2
(p)

C
2

,...,
wk (p)

Ck

"

#
$

%

&
' (1)

and proposed a heuristic algorithm that finds a path which has the minimum cost, i.e., minimizes

the above function. We shall refer to this scheme of minimizing function (1) over all paths as the

min-max method. Korkmaz and Krunz [14] proposed a heuristic algorithm that finds a feasible

4

path that satisfies K additive constraints, i.e., wk(p)≤ Ck, k=1,2,...,K, which minimizes a cost

function. The feasible path is obtained by minimizing the following non-linear cost function over

all paths

w
1
(p)

C
1

"

#
$

%

&
'

λ

+
w
2
(p)

C
2

"

#
$

%

&
'

λ

+ ...+
wK (p)

CK

"

#
$

%

&
'

λ

(2)

where λ is an integer number. We shall refer to this scheme of minimizing function (2) over all

paths as the minSS (minimum sum of squares) method. It has been shown that by minimizing this

function at least one of the constraints is satisfied, while the remaining constraints are subject to a

bound equal to the original bound times the quantity K
λ , where K is the total number of

constraints. Also, it was shown that when λ tends to infinity, it becomes compatible to the min-

max function (1). The authors considered primarily the case of λ=2. Barolli et al [15] combined

the end-to-end delay and packet loss rate into the function: wd(p)/ws(p), where the numerator is

the probability that a packet will be successfully transmitted all the way to its destination,

calculated by multiplying the packet loss rate for each link along the path. Khavi et al [16]

proposed a function for combining metrics that requires defining a parameter ε. Some validations

were given for two metrics for different values of ε.

In this paper, we propose a simple scheme for combining four different QoS metrics, namely,

delay, jitter, packet loss rate, and availability, into a single composite one. This composite QoS

metric is then used as a link cost in Dijkstra’s algorithm to select a path in a multi-domain packet-

switched environment. The complexity of the proposed algorithm is that of Dijkstra’s algorithm.

Once the end-to-end path has been calculated, an MPLS label distribution protocol, such as

RSVP, can be employed to setup the connection. The actual details of how this can be

implemented are beyond the scope of this paper. We use the SOA paradigm for multi-domain

routing as a testbed in order to evaluate our scheme, and we show through experimentation that it

5

gives better results than the two popular functions, namely, min-max and minSS. While our focus

has been on inter-domain path selection, the approach is also applicable to multi-metric path

selection within a single domain.

The paper is organized as follows. In the following section we briefly review the SOA

paradigm for routing in a multi-domain environment and describe the four QoS metrics: delay,

jitter, packet loss rate, and availability. In section 3, we give a geometric interpretation of the

minSS function and suggest some alternative functions, and in section 4, we describe our

proposed scheme for combining these four QoS metrics. Numerical results are provided in

section 5, and finally the conclusions are given in section 5.

2. The SOA framework and the QoS metrics

The SOA framework for inter-domain routing with QoS has been discussed in the open literature,

see Verdi et al [4], Williams [11], and Bastiaansen et al [17]. We assume that network providers

post connectivity to a service repository. This connectivity is in the form of tunnels established

between the border routers of a domain controlled by a network provider, along with usage price,

available bandwidth, and QoS metrics of delay, jitter, packet loss rate, and availability. A tunnel

could be as an LSP setup using the MPLS architecture. Let us assume that user A wants to

establish a connection with user B subject to QoS guarantees, where A and B belong to different

domains. A service integrator will access the repository and choose among the offerings by the

network providers a set of tunnels that make-up an end-to-end path from A to B subject to the

required QoS constraints and costs. The implementation aspects of this SOA scheme are beyond

the scope of this paper. We now describe the four QoS metrics considered in this paper.

Delay: The end-to-end delay consists of the fixed propagation delay between the sender and

the receiver plus a variable delay which is the sum of the queueing delays encountered by the

6

packets at each router along the path. Assuming that a router is based on the output buffering

design, packets may encounter delays at the output ports of the router while they are awaiting

transmission on an outgoing link. The end-to-end delay is typically expressed as an average

delay, a fixed upper bound, or a statistical upper bound D expressed as a percentile γ. That is, if X

is the end-to-end delay then P[X≤D]≥γ%. In this paper, we will assume a tunnel delay which

includes the queueing delay at the output port, transmission time and propagation time. This

value is additive over multiple tunnels. This permits the results to be used assuming mean delays,

or fixed upper bounds, or percentile delays. In general percentile delays are not additive, but it is

possible to construct a function that will yield the percentile of a mixture of distributions if we

know the percentile of the individual component distributions. For details see Anjum and Perros

[18].

Jitter: There is no specific metric for the jitter, which is used to indicate the variability in the

inter-arrival time of packets at the destination. Various measures have been proposed in the

literature, such as, the range (i.e. the difference between the largest and the smallest observed

inter-arrival time), the variance of the inter-arrival times, and the γ percentile of the inter-arrival

time at the destination. In this paper, we will assume the latter, that is, the tunnel jitter is given by

the γ percentile of the inter-arrival time at the destination, see [19]. As explained above, using the

results in Anjum and Perros [18], percentiles can be added exactly, and consequently, jitter is

additive over multiple links.

Packet loss rate: Let pi be the packet loss rate at the ith tunnel. Then, for a connection

established over, say 1 to K tunnels, the arrival loss rate is λp1+ λ(1-p1)p2+ λ(1-p1)(1-p2)p3+...+

λ(1-p1)...(1-pK-1)pK, where λ is the arrival rate of packets to the connection. Due to the fact that pi

is in general very small, we have that 1- pi is approximately equal to 1, and therefore, the arrival

7

loss rate is λ(p1+p2+...+pK). That is, the end-to-end packet loss rate is obtained by adding up al

the individual packet loss rates of the tunnels along the path of the connection.

Availability: This is expressed as the probability that a tunnel is available. That is, it is the

percent of time that the tunnel is up. Assuming independence between tunnels, the end-to-end

availability is obtained by multiplying all the availability probabilities of the tunnels that make up

the connection.

We note that the bandwidth requested for a connection is treated as a constraint, in the sense,

that all the tunnels that do not satisfy the bandwidth request will not be considered for the path

calculation.

3. Geometric interpretation of the minSS function

For each tunnel i let di, ji, li and ai be the delay, jitter, packet loss rate and availability,

respectively. For a path p, consisting of a series of interconnecting tunnels, let wd(p), wj(p), wl(p),

and wa(p), be the total end-to-end delay, jitter, packet loss rate and availability, respectively. The

following constraints should be satisfied:

wd(p)≤D, wj(p)≤J, wl(p)≤L, wa(p)≥A

where D, J, L and A are the requested constraints in the SLA on the QoS metrics of delay, jitter,

packet loss rate, and availability. Note that the delay, jitter, and packet loss are subject to an

upper bound, whereas availability is subject to a lower bound. Each path metric is obtained by

summing up the metrics of the tunnels that make up the path, except for the availability where

wa(p) is the product a1a2...al. Since the other metrics have to be minimized, we convert the path

availability to path downtime, that is, the percent of time that the tunnel is down, which is given

by the constraint 1- wa(p)≤ 1-A. Consequently, function (2), for λ=2, used in the minSS method

can be written as follows:

8

wd (p)

D

"

#
$

%

&
'
2

+
w j (p)

J

"

#
$

%

&
'

2

+
wl (p)

L

"

#
$

%

&
'
2

+
1− wa (p)

1− A

"

#
$

%

&
'
2

(3)

This function is minimized over all paths. We note that by dividing each path metric by its

constraint bound, we automatically normalize these metrics to the [0,1] space. This eliminates the

problem of the metrics taking values from sets with different ranges. For instance, for a given

path p the delay could take values in [1,100] whereas the jitter is a lot less and it may take values

in [1,20]. We also note that for λ=2, expression (3) is the squared distance from zero. For

presentation purposes, let us consider only two QoS metrics, namely delay and jitter. Then, the

set of paths that satisfy the two metric constraints are within the shaded square in Figure 1.

Figure 1: The feasible set of values of function (3)

Since all paths p satisfy the delay and jitter constraint bounds, i.e., wd(p)/D ≤ 1 and wj(p)/J ≤

1, all the paths lie within the square bounded by the X and Y axes and the two dotted lines defined

by the points {(0,1), (1,1)} and {(1,0), (1,1)}. Now, let us assume that we run Dijkstra’s

algorithm using delay as a link cost and let d* be the minimum delay. Likewise, let j* be the

minimum jitter if we ran Dijkstra’s algorithm using jitter as a link cost. Then, obviously no paths

can lie below the horizontal line crossing the Y axis at the point d*/D, and left of the vertical line

wd(p)/D

wj(p)j/J

1

d*/D

j*/J

(j*/J,d*/D)

(wd(p)/D, wj(p)/J)

9

crossing the X axis at the point j*/J. As a result the set of feasible paths lie within the shaded box.

Consequently, the expression

wd (p)

D

"

#
$

%

&
'
2

+
w j (p)

J

"

#
$

%

&
'

2

(4)

can be seen as the squared distance from (0,0), and minimizing it attempts to find a path that is

close to the value (j*/J, d*/D), which may not always be achievable.

Based on the above observation, alternative schemes can be used, such as, maximize the

distance from the worst case which is (1,1), i.e.,

G1 =max
p

1−
wd (p)

D

#

$
%

&

'
(
2

+ 1−
w j (p)

J

#

$
%

&

'
(

2)
*
+

,+

-
.
+

/+

or, minimize the distance from the point (j*/J, d*/D), i.e.,

G2 =min
p

d *

D
−
wd (p)

D

#

$
%

&

'
(
2

+
j *

J
−
w j (p)

J

#

$
%

&

'
(

2)
*
+

,+

-
.
+

/+

which requires first to calculate d* and j*. In the same vein, since d* and j* are large numbers

(bigger than 1), we can maximize the distance from (j*,d*), i.e.,

G3 =max
p

d * −
wd (p)

D

#

$
%

&

'
(
2

+ j * −
w j (p)

J

#

$
%

&

'
(

2)
*
+

,+

-
.
+

/+

For the case of packet loss rate and downtime, the optimum values l* and 1-a* are less than 1,

and therefore G3 is expressed as:

or

G5 =max
p

1−
wl (p)

L

#

$
%

&

'
(
2

+ 1−
1− wa (p)

1− A

#

$
%

&

'
(
2)

*
+

,
-
.
.

G4 =min
p

l* −
wl (p)

L

#

$
%

&

'
(
2

+ (1− a*) −
1− wa (p)

1− A

#

$
%

&

'
(
2)

*
+

,
-
.

10

The above functions were implemented in a genetic algorithm and were compared against

each other. Numerical comparisons of G1, G2 and G3 with the minSS scheme for delay and jitter

only, showed that they produce similar results. Likewise, similar results were obtained when we

compared G4 or G5 with the minSS scheme for packet loss rate and availability only. For the

four metrics, we compared the minSS scheme against a metric which was a combination of G3

and G4 or G3 and G5. Again, similar results were obtained. The details of these numerical

comparisons are omitted since they are not of any particular interest.

4. The new composite QoS metric

In this section, we propose a simple method for combining the four metrics for each tunnel to a

single composite metric. The optimum multi-domain path is then calculated using Dijkstra’s

algorithm where the link cost is the composite metric. This method is also applicable to a single

domain, where each link is characterized by the four QoS metrics.

This composite metric was motivated by the notion of the fitness function used in genetic

algorithms. The idea behind the fitness value is to rank linearly the values of each metric from 1

and N, and then normalize the rankings by dividing each of them by their sum 1+2+...+N =

N(N+1)/2. Specifically, let us consider the delay metric and let the set of all delays be d1,d2,...,dN,

where di is the delay of the ith tunnel. This sequence is first sorted in an ascending order and then

the ith element of this ordered list is mapped to integer i, which is then divided by N(N+1)/2. Let

us assume that the ith element of the sorted list belongs to the jth tunnel. Then, the value

i/[N(N+1)/2] is the fitness value of this tunnel for the delay metric. As an example, let us assume

that N=4, and {d1, d2, d3, d4} = {2, 4, 3, 1}. Then, the sorted list is {1(4), 2(1), 3(3), 4(2)}, where

the value in the parenthesis indicates the tunnel number. Then, the fitness values for the delay for

tunnel 1, 2, 3, 4 are 2/10, 4/10, 3/10, 1/10 respectively.

11

The same procedure is used for the jitter and packet loss rate. The availability is treated in the

opposite manner. That is, the set of all availability values a1,a2,...,aN is sorted out in a descending

order and the ith element of this ordered list is matched to the ith integer. The integers are then

normalized by dividing them by N(N+1)/2. As a result, the highest tunnel availability is matched

to the lowest fitness value 1/[N(N+1)/2], and the lowest availability is matched to the highest

fitness value N/[N(N+1)/2].

Let fv(di), fv(ji), fv(li), and fv(ai) be the fitness values for the delay, jitter and packet loss rate

of the ith tunnel. Then, the composite metric cmi for the ith tunnel is constructed by simply

adding these values, that is, cmi= fv(di)+fv(ji)+fv(li)+fv(ai), i=1,...,N. The best path is then

calculated using Dijkstra’s algorithm with the above composite link cost. We shall refer to this

scheme as Dijkstra(CM), where CM stands for composite metric.

We note that the linear ranking used in the proposed algorithm is the default method

employed in genetic algorithms. We also considered the case where the ranking of the values of

each metric is proportional to the size of the metric value, as well as a combination of linear

ranking for some metrics and proportional ranking for the rest of them. Neither approaches gave

as good results as the linear ranking.

5. Numerical results

In this section we provide numerical comparisons between our method, Dijksra(CM), and the

min-max and minSS schemes. The numerical results were obtained using the multi-domain

network shown in Figure 2. This is a fictitious network with sufficient path diversification that

permits the generation of paths from 2 to 10 hops, a hop being a tunnel. Randomness is

introduced by varying the values of the QoS metrics of the tunnels. In several papers authors

generate random topologies which they then use to test their routing algorithms. The problem

12

with this approach is that there is no control on the complexity of the generated topologies, and as

a result the tests carried out on these topologies maybe trivial.

Figure 2: The multi-domain network

The network consists of 10 domains and 60 routers, and the links between routers indicate the

tunnels within domains and between domains. Routers that lie along a tunnel are not shown. Each

tunnel is associated with a delay, jitter, packet loss rate, and availability. In order to vary the set

of QoS metrics, we classified the tunnels within domains into short, medium, and long as follows.

All tunnels in domains with 3 or 5 routers, i.e., domains 1, 2, 3, 4, 9, and 10, were classified as

short. All tunnels in domains with 6 or 7 routers, i.e., domains 7 and 8, were classified as

medium, and all tunnels in domains with 9 or 10 routers, i.e., domains 5 and 6, were classified as

long. In addition, the inter-domain tunnels were classified in the same manner. All tunnels

13

between consecutively numbered domains and between domains 2 and 6 were classified as short.

All tunnels between domain pairs of 2-7, 3-5, 5-9, 6-8, and 6-9, were classified as medium, and

all tunnels between domain pairs 1-7, 1-8, and 4-10, were classified as long.

Type Name Delay Jitter Packet Loss Rate Availability

Short [1,50] [1,5] 0.000001 [0.9999,0.99999]

Medium [51,100] [6,10] 0.00001 or 0.0001 [0.999,0.9999)

Long [101,150] [11,15] 0.001 [0.99, 0.999)

Table 1: Tunnel types and related QoS metric ranges

The distribution of the values each QoS metric takes is assumed to be uniform within the

range of values shown in Table 1. We assumed that the delay, jitter, and packet loss rate are

proportional and the availability is inversely proportional to the tunnel length. The idea behind

this tunnel classification is based on the notion that an operator will maintain tunnels with

different overall quality.

For the min-max scheme we adapted (1) to the specific four QoS metrics considered in this

paper as follows:

max
wd (p)

D
,
w j (p)

J
,
wl (p)

L
,
1− wa (p)

1− A

#

$
%

&

'
((5)

For the minSS scheme we used expression (3) reproduced below for presentation purposes:

wd (p)

D

"

#
$

%

&
'
2

+
w j (p)

J

"

#
$

%

&
'

2

+
wl (p)

L

"

#
$

%

&
'
2

+
1− wa (p)

1− A

"

#
$

%

&
'
2

(6)

We recall that function (5) is used in a heuristic algorithm that finds a path that has the

minimum cost among all paths; likewise for function (6). In this paper, we calculate the optimum

path that minimizes the path cost given by (5) respectively (6) using a genetic algorithm that we

implemented. For a given source-destination pair we generated 30 different paths for the initial

14

generation that satisfied the following four constraints of delay, jitter, packet loss rate, and

availability, indicated in section 3:

wd(p)≤D, wj(p)≤J, wl(p)≤L, wa(p)≥A

Then, we regenerated 30 paths using function (5) respectively (6). Subsequently, we carried out

regeneration and crossover which also yielded 30 paths of which we selected the best one using

function (5) respectively (6). (We note that the bandwidth requested for a connection is treated as

a constraint, in the sense, that all the tunnels that do not satisfy the bandwidth request are not

considered for the path calculation. In view of this, in our experiments, we assumed that all

tunnels satisfy the bandwidth requirements.)

The results in Figures 3, 4, 5, and 6 are given for 2, 4, 6, 8, and 10 hop paths and they were

obtained as follows. We first generated 300 different QoS matrices, each consisting of four

stochastic variates for the delay, jitter, packet loss rate, and availability, for each tunnel. These

stochastic variates were obtained using the uniform distributions reported in Table 1. For the h

hop path, h=2,4,6,8,10, we selected five different source-destination pairs from Figure 2 whose

minimum distance is exactly h hops. For each of these pairs and for each QoS matrix, we

calculated the best path using a) the genetic algorithm with function (5) (min-max), b) the genetic

algorithm with function (6) (minSS), and c) our method, Dijkstra(CM). As a result, for each

number of hops h and for each path calculation scheme we obtained 1500 independent

replications (i.e., 300 for 5 paths), based on which we calculated the average and its 95%

confidence interval of the delay, jitter, packet loss rate, and availability. Finally, in order to obtain

a baseline comparison, we also calculated the best path using Dijkstra’s algorithm with each

individual QoS metric, i.e., delay, jitter, packet loss rate and availability. We note that the

confidence intervals were quite small and therefore they have not been given in the graphs below.

15

Figure 3 gives the delay of the best path computed using min-max, minSS and Dijsktra(CM).

We note that our method outperforms min-max and minSS as the length of the path increases. It

also gives results which are very close to the optimum results as far as delay is concerned,

obtained using Dijkstra’s algorithm with delay as link cost. Figure 4 gives similar results for

Figure 3: Delay (uniform distribution)

Figure 5: Packet loss rate (uniform distribution)

Figure 4: Jitter (uniform distribution)

Figure 6: Availability (uniform distribution)

jitter, and similar observations as in Figure 3 hold. Figures 5 and 6 give results for the packet loss

rate and availability respectively. We note that all three methods have similar performance. They

16

all deviate from the optimum solution for hops greater than 4. In general minSS and

Dijkstra(CM) outperforms min-max.

Figure 7: Delay (normal distribution)

Figure 9: Packet loss rate (normal distribution)

Figure 8 : Jitter (normal distribution)

Figure 10: Availability (normal distribution)

A second set of experiments was carried out assuming that the range of values that each

metric takes as reported in Table 1 is not uniformly distributed but normally distributed. Each

normal distributions was matched to its corresponding uniform distribution by using the same

mean and fixing the standard deviation so that the mean +/- 3 standard deviations was equal to

the upper/lower bound of the uniform distribution. The results are given in Figures 7 to 10. We

note that the results are similar to those given in Figures 3 to 6.

17

Figure 11: Delay (identical distribution)

Figure 13: Packet loss rate (identical distribution)

Figure 12: Jitter (identical distribution)

Figure 14: Availability (identical distribution)

A further comparison between minSS and Dijkstra(CM) is given in Figures 11 to 14 under the

assumption that all tunnels are identical as far as the four QoS metrics are concerned. (The min-

max was not included in these graphs and also in the subsequent comparisons, since it does not

perform as well as minSS.) Specifically, the delay, jitter, packet loss rate, and availability for

each tunnel is uniformly distributed in the range [1,100], [1,5], {0.000001,0.00001,0.0001,

0.001} and [0.99,0.99999] respectively. Again, Dijkstra(CM) calculates paths with lower delay

18

and jitter and higher availability as the number of hops increases, than those calculated using the

minSS function. Both methods are similar for the packet loss rate.

The results given in graphs 3 to 6 and 7 to 10, were obtained assuming three groups of

tunnels, i.e., short, medium, and long with QoS metrics as indicated in Table 1. We assumed that

the delay, jitter, and packet loss rate were proportional and the availability was inversely

proportional to the tunnel length. We also experimented with different combinations of the

distributions for the QoS metrics given in Table 1 for each group of tunnels, of which we report

on the following two representative cases.

In [19] it was mentioned that the jitter is quite large in access networks as opposed to wide

area networks, because the path from a subscriber to the edge router serving the access network is

fixed, as opposed to a wide area network where the operator has more paths to choose from so

that a low jitter can be provided. Based on this observation, we switched the distributions for the

jitter between the short and the long tunnels, while all other distributions remained as shown in

Table 1. That is, we assumed that the jitter is uniformly distributed in the range of [11,15] for

short tunnels and [1,5] for long tunnels. In graphs 15 to 18, we give results for the minSS, and

Dijkstra(CM). For comparison purposes we also provide the optimum solution using Dijkstra’s

algorithm with each individual QoS metric. As can be seen Dijkstra(CM) gives better results than

minSS for all metrics except jitter for which minSS outperforms Dijkstra(CM) for 10 hops.

The second set of results are given in graphs 19 to 22. They were obtained by switching the

distributions for the jitter, packet loss rate, and availability between the short and long tunnels,

with the remaining values being the same as in Table 1. In this case, Dijkstra(CM) and minSS

have comparable performance, with Dijkstra(CM) performing slightly better than minSS for jitter

and packet loss rate, as the number of hops increased.

19

5. Conclusions

We proposed a simple function for combining four QoS metrics, delay, jitter, packet loss rate,

and availability, into a single composite QoS metric. This composite metric can then be used as

the link cost in Dijkstra’s algorithm to calculate the shortest path. We compared the proposed

QoS function against two popular schemes, min-max [13] and minSS [14], and against the

individual optimum solutions obtained using Dijkstra’s algorithm for each individual QoS metric,

for different combinations of values of the QoS metrics. Our proposed method outperforms the

min-max and minSS schemes, of which the minSS gives better results than min-max, and it often

gives results which are very close to the individual optimum solutions. Our method gives paths

that have lower delay and jitter than the minSS scheme as the number of hops of the path

increases, and similar packet loss rate and availability as minSS. In addition, our proposed

method is extremely easy to use and it can be incorporated in other path calculation algorithms.

6. Acknowledgment

This work has been supported by the Scientific and Technological Research Council of Turkey.

References

[1] Yannuzzi, M., Masip-Bruin, X., Sanchez, S., Domingo-Pascual, J., Oreda, A., and Sprintson, A.,

“On the challenges of establishing disjoint QoS IP/MPLS paths across multiple domains”, IEEE

Communications Magazine, Dec. 2006, 44, (12), pp. 60-66.

[2] Griffin, D., Spencer, J., Griem, J., Boucadair, M., Morand, P., Howarth, M., Wang, N., Pavlou, G.,

Asgari, A., and Georgatsos, P., “Interdomain Routing Through QoS-Class Planes”, IEEE

Communications Magazine, Feb. 2007, 45, (2), pp. 88-95.

[3] Xiao, L., Wang, J., Lui, K.-S., and Nahrstedt, K., “Advertising Interdomain QoS Routing

Information”, IEEE Journal on Selected Areas in Communications, Dec. 2004, 22, (10), pp. 1949-

1964.

[4] Verdi, F. L., Magalhães, M. F., Cardozo, E., Madeira, E. R. M., and Welin, A., “A Service Oriented

Architecture-based Approach for Interdomain Optical Network Services”, Journal of Network and

Systems Management, June 2007, 15, (2), pp. 141-170.

[5] Sarangan, V., Ghosh, D., and Acharya, R., “Capacity-Aware State Aggregation for Interdomain

QoS Routing”, IEEE Transactions on Multimedia, Aug. 2006, 8, (4), pp. 792-808.

[6] Manvi, S.S., and Venkataram, P., “Mobile Agent Based Approach for QoS Routing”, IET

Communications, 2007, Vol. 1, No. 3, pp. 430-439.

20

[7] Yen, Y.S., Chang, R.S., and Chao, H.C., “Flooding-limited for multi-constrained quality-of-service

routing protocol in mobile ad hoc networks”, IET Communications, 2008, Vol. 2, No. 7, pp. 972-

981.

[8] Farrel, A., Vasseur, J. P., and Ayyangar, A., “Framework for Inter-Domain Multiprotocol Label

Switching Traffic Engineering”, IETF RFC 4726, Nov. 2006.

[9] Geleji, G., Perros, H., Xin, Y., and Beyenne, T., “A Performance Analysis of Inter–Domain QoS

Routing Schemes Based on Path Computation Elements”, HONET 2008.

[10] Geleji, G. and Perros, H., “Multi-domain PCE-based QoS routing”, Technical Report, Computer

Science, NC State University, 2010.

[11] Williams, M., “End-to-End Network Services: What is Really Missing?”, 22
nd
Asia-Pacific

Advanced Network Meeting, Singapore, July 2006.

[12] Jaffe, J.M., “Algorithms for finding paths with multiple constraints”, Networks, 1984, 14, (1), pp.

95–116.

[13] De Neve, H., and Van Mieghem, P., “A Multiple Quality of Service Routing Algorithm for PNNI”,

Proc. IEEE ATM Workshop, Fairfax, VA, USA, May 1998, pp. 324-328.

[14] Korkmaz, T., and Krunz, M., “Multi-constraint Optimal Path Selection”, Proc. 20
th
Annual Joint

Conf. of the IEEE Computer and Communications Societies (INFOCOM), Anchorage, AK, USA,

April 2001, pp. 834-843.

[15] Barolli, L., Koyoma, A., Matsumoto, K., Saganuma, T., and Shiratori, N., “A Genetic Algorithm

Based Routing Methid Using Two QoS Parameters”, Proc. 13th International Conf. and Workshop

on Database and Expert Systems Applications (DEXA’02), Aix-En-Provence, France, Sept. 2002,

pp. 7-11.

[16] Khadivi, P., Samavi, S., Todd, T.D., and Saidi, H., “Multi-constraint QoS Routing Using a New

Single Mixed Metric”, Proc. IEEE Int. Conf. Communications (ICC 2004), Paris, France, June

2004, Vol. 4, pp. 2042-2046.

[17] Bastiaansen, H., and Hermans, P., “Managing Agility Through Service Orientation in an Open

Telecommunication Value Chain”, IEEE Communications Magazine, Oct. 2006, 44, (10), pp. 86-

93.

[18] Anjum B. and Perros, H., “Adding percentiles for end-to-end quality of services”, Technical Report,

Computer Science, NC State University, 2009.

[19] “Inter-provider Quality of Service”, White paper draft 1.1 November 17, 2006, a white paper

prepared by the Quality of Service Working Group MIT Communications Futures Program (CFP

21

Figure 15: Delay (switched jitter distributions)

Figure 16: Jitter (switched jitter distributions)

Figure 17: Packet loss rate (switched jitter distributions)

Figure 18: Availability (switched jitter distributions)

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12

minSS

Dijkstra (CM)

Dijkstra (Delay)

#Hops

0
10
20
30
40
50
60
70
80
90
100
110
120

0 2 4 6 8 10 12

minSS

Dijkstra (CM)

Dijkstra (Jitter)

#Hops

0

0.001

0.002

0.003

0.004

0.005

0 2 4 6 8 10 12

minSS

Dijkstra (CM)

Dijkstra (Packet
Loss)

#Hops

0.974

0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0 2 4 6 8 10 12

minSS

Dijkstra (CM)

Dijkstra
(Availability)

#Hops

22

Figure 19: Delay (switched jitter, packet loss rate, and availability distributions)

Figure 20: Jitter (switched jitter, packet loss rate, and availability distributions)

Figure 21: Packet loss rate

(switched jitter, packet loss rate, and availability distributions)

Figure 22: Availability (switched jitter, packet loss rate, and availability distributions)

0

100

200

300

400

500

600

700

800

900

1000

1100

0 2 4 6 8 10 12

minSS

Dijkstra (CM)

Dijkstra (Delay)

#Hops

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12

minSS

Dijkstra (CM)

Dijkstra (Jitter)

#Hops

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0 2 4 6 8 10 12

minSS

Dijkstra (CM)

Dijkstra (Packet
Loss)

#Hops

0.975

0.98

0.985

0.99

0.995

1

0 2 4 6 8 10 12

minSS

Dijkstra (CM)

Dijkstra
(Availability)

#Hops

