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Abstract. Most research in queueing theory is typically based on the steady-state analysis. In today’s dy-

namically changing traffic environment, the steady-state analysis may not provide enough information to operators

regarding Quality of Service (QoS) requirements and dynamic design. In addition, the steady state analysis is not

practical for nonstationary arrivals. In this paper, we consider the time-dependent behavior of a communication link

depicted by an Erlang loss queue with stationary and nonstationary arrival rates. The time-dependent analysis for

stationary arrival rates captures the dynamic nature of the system during its transient phase. The time-dependent

analysis for nonstationary arrivals is of great interest since the arrival rate in most communication systems varies

over time.

In this paper, we review and compare various methods that have been proposed in the literature for the time-

dependent analysis of the nonstationary Erlang loss system for both stationary arrivals and nonstationary arrivals.

We try to classify five practical methods into two categories: (1) closed-form exact solution and closed-form approx-

imation; (2) numerical exact solution and numerical approximation. Our work tries to compare their computation

complexity and accuracy. We apply some of these techniques to dimensioning dynamically a single communication

system.

Key words. Markov chain, Stationary arrivals, Nonstationary arrivals, Blocking probability, Dynamic dimen-

sioning

Introduction. In this paper, we consider the time-dependent behavior and design of a

communication link with stationary and also with nonstationary arrival rates. Time-dependent

(transient) analysis is motivated by the dynamic nature of the traffic. Riordan [14] introduced

different methods for the transient analysis of a single service center. The necessary and

sufficient conditions for a queueing network to have a transient product-form solution are

provided by Taylor and Boucherie [15]. A new dimensioning approach for optical networks

under nonstationary arrival rates was introduced by Nayak and Sivarajan [13].

Queueing models with nonstationary arrival rates have been studied extensively by Ab-

dalla and Boucherie [1], Alnowibet [2], Alnowibet and Perros [3], Jagerman [6], Karagiannis

et al. [7], Massey and Whitt [10], Massey [11], and Nayak and Sivarajan [13]. The non-

stationary blocking probability for an Erlang loss queue was first obtained by Jagerman [6]

using the modified offered load (MOL) approach. Massey and Whitt [10] developed analyti-

cal bounds on the error between the MOL approximation and the exact solution for an Erlang

loss queue with a nonstationary arrival rate. A modified offered load approximate product-

form solution was introduced by Abdalla and Boucherie [1] for mobile networks. A survey

for the nonstationary analysis of the Erlang loss queue can be found in Alnowibet and Perros

[3]. Mandjes and Ridder [9] proposed large deviation solutions for the transient analysis of

the Erlang loss model with a stationary arrival rate. Massey [11] analyzed different queues

with time-varying arrival rate for telecommunication models. Nayak and Sivarajan [13] in-

troduced a dynamic dimensioning approach for optical networks under nonstationary arrival

rates. Karagiannis et al. [7] showed that the traffic of the internet backbone network can be

characterized by a nonstationary Poisson process.

In this paper, we review and compare various techniques that have been reported in the

literature for the calculation of transient blocking probabilities of an Erlang loss queue as-

suming a stationary and nonstationary arrival rate. We also dimension a communication link,

modelled by an Erlang loss queue for both stationary and nonstationary arrivals.

The paper is organized as follows. In section 1 we describe the behavior of an Erlang
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loss queue as a function of time assuming that the arrival rate is either constant or nonstation-

ary, i.e. a function of time t. We also show how an Erlang loss queue can be dimensioned

using time-dependent blocking probabilities. In section 2, we review closed-form solutions

of the transient behavior of an Erlang loss queue assuming constant and nonstationary arrival

rates. Section 3 reviews an approximation method based on a property of truncated Markov

processes, and section 4 describes a numerical procedure known as the fixed point approxi-

mation (FPA). An alternative approach to dimensioning a communication link, based on the

method of large deviations, is presented in section 5. Numerical results are given in section

6. Finally the conclusions are summarized in section 7.

1. The Nonstationary Erlang Loss System. An Erlang loss queue is a system con-

sisting of s servers and no waiting room. A customer is lost if it arrives at a time when all

servers are busy. The loss queue is commonly used to model the telephone network. It has

been extensively studied in the stationary case, i.e., assuming that the arrival process is a

homogeneous Poisson process, or more generally, an Interrupted Poisson processes, and the

service rate is exponentially distributed. (It has been shown that in a loss system, the block-

ing probability is insensitive to the service distribution but it only depends on its mean). The

nonstationary loss queue, where the arrival rate is time-dependent is also of great interest.

FIG. 1.1. The Markov chain of Erlang loss model for a single service center

The rate diagram of a loss queue with nonstationary arrivals (Mt/M/s/s) is shown in

FIG.1.1, where s is the total number of servers, λ(t) is the time-dependent arrival rate and µ
is the service rate. We say that the arrival process is stationary if it is time-independent, i.e.,

λ(t) = λ, and nonstationary if it is time-dependent (or time-varying). In this case λ(t) is a

single continuous or discrete function of time. We discuss these two cases in the following

two subsections.

1.1. Stationary Arrivals. Let us consider a loss queue M/M/s/s with a time-independent

Poisson arrival rate λ. Each arrival requests a service that requires an exponential amount of

time with mean 1/µ, and it is performed by a single server. The queue has s identical servers

and there is no waiting room. The probability that there are n, n=0, 1, ..., s, customers in the

queue at time t, Pn(t), is given by the following set of forward differential equations:

P ′

0(t) = µP1(t)− λP0(t)(1.1)

P ′

n(t) = λPn−1(t) + (n+ 1)µPn+1(t)− (λ+ nµ)Pn(t),(1.2)

P ′

s(t) = λPs−1(t)− sµPs(t)(1.3)

where P0(t)+P1(t)+P2(t)+...+Ps(t)=1, and 0 ≤ Pn(t) ≤ 1, for t ≥ 0 and n=0, 1, 2, ..., s,

with initial conditions: P0(0)=1 and Pn(0)=0, n=1, 2, 3, ..., s.

A numerical example of the time-dependent blocking probability is shown in FIG.1.2. These

probabilities were obtained by solving equations (1.1)-(1.3) using an ordinary differential
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FIG. 1.2. The time-dependent blocking probabilities of the stationary arrival for M/M/8/8, with offered load

ρ = 2

equation (ODE) solver. We note that the blocking probability reaches steady-state when

t = 6. We also note that the steady-state probability can be very different from that during

the transient state. Therefore, dimensioning the network based on the steady-state may result

in overprovisioning during the transient period. This may have little impact if the duration of

the transient period is very short. However, if the transient period is long, for example, a few

months for optical networks, then it may be advantageous to dimension the network using the

time-dependent blocking probability instead of the steady-state probability.

1.2. Time-varying Arrivals. Let us consider a loss queue M(t)/M/s/s with a time-

dependent arrival rate λ(t). Each arrival requests a service that requires an exponential

amount of time with mean 1/µ. The probability that there are n, n=0, 1, ... , s, customers in

the queue at time t, Pn(t), is represented by the following forward differential equations:

P ′

0(t) = µP1(t)− λ(t)P0(t)(1.4)

P ′

n(t) = λ(t)Pn−1(t) + (n+ 1)µPn+1(t)− (λ(t) + nµ)Pn(t),(1.5)

P ′

s(t) = λ(t)Ps−1(t)− sµPs(t)(1.6)

where P0(t) + P1(t) + P2(t) + ... + Ps(t)=1, t ≥ 0, and 0 ≤ Pn(t) ≤ 1, for t ≥ 0
and n=0, 1, 2, ..., s, with initial conditions: P0(0)=1 and Pn(0)=0, n=1, 2, ..., s.

In FIG.1.3, we show a numerical example of the time-dependent blocking probability for

a single link obtained assuming a periodic arrival rate function λ(t) = 180+50sin(2(t+20)).
These probabilities were calculated numerically by solving equations (1.4)-(1.6) using an

ODE solver. We note that the blocking probability in this case also has a transient period

followed by repeating periods. The periodic behavior looks like the steady-state behavior of

the stationary arrival case but the blocking probabilities follow a repeating pattern.
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FIG. 1.3. The time-dependent blocking probabilities of the nonstationary arrival where λ(t) = 180 +
50sin(2(t+ 20)) and s=220

1.3. Dimensioning A Single Link . A link can be dimensioned using the time-dependent

blocking probability for both stationary and nonstationary arrivals. This is done by calculat-

ing the number of servers s so that the blocking probability is under a given threshold at any

time t.

1.3.1. Stationary Arrivals. Let us consider an Erlang loss queue with λ = 10. The

number of servers required so that the blocking probability is less than 0.01 is given in

FIG.1.4. The solid line labelled ‘steady-state dimensioning’ gives the optimum number of

servers calculated using the steady-state blocking probability of an Erlang loss model with

λ = 10. The dotted line labelled ‘time-dependent dimensioning’ gives the result using the

time-dependent blocking probability of the arrival rate, obtained using differential equations

(1.1) to (1.3). We calculate the number of servers iteratively until the blocking probability

is less than 0.01. Note that these two curves are the same after the transient phase is over.

As we can see, the dimensioning results are quite different for these two scenarios with the

time-dependent dimensioning requiring fewer servers.

1.3.2. Time-varying arrivals. We consider an example where the arrival rate varies as

shown in FIG.1.5. We assume that time is divided into 12 periods, where each period for

instance can be a month. During each period i, the arrival rate is constant. In FIG.1.5, the 12

arrival rates are: λ(t)=[8, 1, 3, 6, 2, 5, 12, 9, 11, 4, 7, 10]. We dimension the link so that at

any time, the blocking probability is less than 0.01. The dimensioning results are also shown

in FIG.1.5, and they were obtained assuming that all servers are free at time t = 0. These

results were obtained as follows: we first calculate the number of servers for the first period

using equations (1.4)-(1.6), assuming an empty system at time t = 0 and service rate µ = 1,

so that the nonstationary blocking probability is less than 0.01. This is done as before, in an

iterative manner. We repeat this process for the second period assuming that at the beginning

of the period the number of customers in it is equal to the average number of customers in the

system.

This process is repeated until all 12 periods have been analyzed. We note that we solve
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FIG. 1.4. A dimensioning example of a single link with stationary arrival rates
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FIG. 1.5. A dimensioning example of a single link with nonstationary arrival rates

this problem by breaking it into periods and analyzing each period separately. Alternatively,

we could solve equations (1.4)-(1.6) for the entire 12 period arrival process. In this case, we

will not have to approximate the initial condition for each period. However, it is difficult to

define λ(t) as a single function over the entire 12 periods.

We note that the dimensioning results are very sensitive to the initial conditions and the

arrival rates, and the required number of servers follows the arrival process.

2. Exact Closed-form Solutions for the Time-dependent Blocking Probability. In

this section, we review closed-form solutions for the transient analysis of the Erlang loss

queue under a constant and nonstationary arrivals.

2.1. Stationary Arrivals. In this case, the time-dependent blocking probability can be

obtained using equations (1.1)-(1.3). We have P ′

n(t) → 0 for all n as t → ∞ in the dif-
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ferential equations (1.1)-(1.3). The differential equations (1.1)-(1.3) reduce to a set of linear

equations from which we can obtain the closed-form solution for the probability Pn that there

are n customers in the system.

Pn = lim
t→∞

P{q(t) = n} =
ρn/n!

s
i=0 ρ

i/i!
, n = 0, 1, ..., s(2.1)

where ρ=λ/µ, and q(t) is the number of customers in the system at time t. The probability

of blocking Bp is:

Bp = lim
t→∞

P{q(t) = s} =
ρs/s!

s

i=0 ρ
i/i!

(2.2)

This is the well-known Erlang B formula. The average number of customers in the system

(i.e. the average number of busy servers) is: limt→∞ E[q(t)]=E[q]=(1−Bp)ρ.

The time-dependent blocking probability function at time t, can be obtained from the

differential equations (1.1)-(1.3). We have:

Ps(t) = βe(Q
T )tα(2.3)

where α is the initial state probability vector , β is an all-zero row vector except that the last

entry is 1, and Q is the infinitesimal generator matrix of the underlying Markov chain, defined

as:























−λ λ 0 · · · 0
µ −µ− λ λ · · · 0
0 2µ −2µ− λ · · · 0
...

...
...

...
...

0 0 · · · λ 0
0 · · · (s− 1)µ −(s− 1)µ− λ λ

0 · · · 0 sµ −sµ























(2.4)

The computation complexity of equation (2.3) is O(s3) using a scaling and squaring algo-

rithm with a Pade approximation [12]. The solution to the differential equations (1.1)-(1.3)

can be found using different methods. An elegant closed-form solution can be obtained using

Sylvester matrix theorem. Let us assume that we start from an empty system and let QT be

the transpose of Q, P (t) = [P0(t), ..., Ps(t)]
T , and P (0) = [1, 0, ..., 0]T . Now the system of

differential equations (1.1)-(1.3) can be written in the following form:

P ′(t) = QTP (t),(2.5)

Solving this equation by applying the property of exponential function, we get

P (t) = e(Q
T )tP (0),(2.6)

Let D = eQ
T t = [d0, d1, ..., ds] where di is the column vector of D. Then we have P (t) = d0

and Pi(t) = d0,i.

Theorem 1 : All the (s+1) eigenvalues of Q are real and distinct and one eigenvalue

of Q is zero .
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Proof: We first change Q to a symmetric tridiagonal matrix A with positive subdiagonal

elements by the similarity transform (this does not change the eigenvalues of Q ). We have:

A=D−1QD, where D is a diagonal matrix. Let us set A∗ as the conjugate transpose of matrix

A. Then we know that A∗=A.

We now show that all eigenvalues of A are real as follow: let (λ, x) be the (eigenvalue,

eigenvector) pair of matrix A.

Ax = λx,(2.7)

Multiplying both sides of equation (2.7) by x∗, we have

x∗Ax = λx∗x,(2.8)

Taking the transpose of equation (2.8) and noticing that A∗ = A, we get:

x∗Ax = λ∗x∗x,(2.9)

where λ∗ is the conjugate transpose of λ. Comparing equation (2.8) and (2.9), we see that

λ = λ∗, which means that all eigenvalues of A are real.

A is a tridiagonal matrix, so we can compute the characteristic polynomial with a three-

term recurrence (just do a determinant expansion) to construct a Sturm sequence. Since off-

diagonal elements are positive, the matrix can only have simple eigenvalues (by the property

of Sturm sequence). Since det(Q)=0, then det(Q-0*I)=0, which means that zero is one of the

eigenvalues of matrix Q. This can also be seen by the fact that row sum of matrix Q is zero.

Theorem 2: Sylvester’s matrix theorem for distinct roots (eigenvalues) (see Frazer [5]):

If G(U) is any polynomial of the square matrix U , and if xi represents one of the n
distinct eigenvalues of U , then

G(U) =

n
∑

i=1

G(xi)Adj(xiI − U)
∏

j 6=i(xj − xi)
(2.10)

An important application of Sylverster’s theorem is in finding a closed-form solution for

the matrix exponential. The following explains how to use this theorem to get the closed-

form solution to our M/M/s/s transient analysis problem. Let x0, x1, ..., xs be the (s + 1)
eigenvalues of Q. From Sylvester’s theorem we have

D = eQ
T t =

s
∑

r=0

exrt
Adj(xrI −QT )
∏

i6=r(xr − xi)
(2.11)

where Adj(U) is the Adjoint matrix of U . Especially, the probability that all servers are busy

at time t can be further simplified as:

Ps(t) =

s
∑

r=0

exrt
(−1)s+1det(M)
∏

i6=r(xr − xi)
(2.12)

where det(M) = λs, λ is the average arrival rate and M is the submatrix of QT with size

s× s. We can obtain all the eigenvalues of matrix Q using the fast algorithm with complexity

O(s2)), reported in [4]. So the computation complexity of equation (2.12) is roughly O(s3).
From Ps(t) we can also know the steady-state probability. The steady-state probability is

just the constant part (which corresponds to the zero eigenvalue of matrix Q) of Ps(t). Other

quantities of interest such as Pn(t) and average number of busy servers at time t can also be

calculated.
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2.2. Nonstationary Arrivals. The closed-form solution to differential equations (1.4)-

(1.6) is complex even for fairly small systems with special arrival rate function λ(t), see

Alnowibet [2]. An explicit solution is provided in Jagerman [6] by using the probability

generating functions of the state probabilities and the corresponding binomial moments where

the arrival rate function λ(t) is considered to be continuous. Following Jagerman [6], we have

that the probability of j calls arriving in the time interval (0, t) is given by

[
 t

0
a(u)du]j

j!
exp(−

∫ t

0

a(u)du)(2.13)

where a(t) is Poisson-offered load given by a(t)=λ(t)/µ. We normalize the service rate µ= 1,

so that a(t) is measured in Erlangs. Let us define the Volterra operator Kr

Krf =

∫ t

0

Kr(t, τ)f(τ)dτ, r = 0, 1, ..., N.(2.14)

The time-dependent blocking probability that all servers are busy at time t is

Ps(t) =
γ(t, 0)

s!
−Ks(t, τ)Ps(t)(2.15)

hence the explicit form of the solution is :

Ps(t) =
Λ(t)s

s!
−Ks

Λ(t)s

s!
+K2

s

Λ(t)s

s!
− ...,(2.16)

where

Λ(t) = e−t

∫ t

0

eua(u)du(2.17)

and Ks is a Volterra operator defined by the kernel

Ks(t, τ) =

s−1
∑

j=0

γ(t, 0)j

j!
e−(s−j)(t−τ)

(

N

s− j − 1

)

a(τ)(2.18)

where

γ(t, τ) = e−t

∫ t

τ

eua(u)du(2.19)

Note that Λ(t) = γ(t, 0). We see that the above explicit solution is quite complicated for an

arbitrary arrival rate λ(t). The computation complexity of equation (2.16) is approximately

O(s3) depending on how many terms used in the series. In view of this, it is not useful in

practice.

3. The Truncated Markov Process Approximation. The following Corollary holds

for truncated reversible Markov process (see Kelly [8]).

Corollary 1: If a reversible Markov process Xt with state space S and equilibrium

distribution Π(j), j ∈ S, is truncated to the set of S1 ⊂ S, then the resulting Markov

process Yt is reversible in equilibrium and has the equilibrium distribution:

Π1(j) =
Π(j)



k∈S1
Π(k)

, j ∈ S1.(3.1)
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It is interesting to note that the equilibrium distribution of the truncated process is just the

conditional (renormalized within the truncated state space) probability of the original process.

An efficient way to obtain the stationary distribution of the M/M/s/s queue is to use the fact

that the M/M/s/s queue is a truncated process of an M/M/∞, which is a reversible Markov

process. Therefore:

P{q = n} = P{q∞ = n|q∞ < s} =
ρn/n!

s

i=0 ρ
i/i!

(3.2)

For the time-dependent analysis of M/M/s/s queue, we also can apply this truncation property

approximately. First let us consider the transient behavior of the M/M/∞ queue Riordan

[14]. We have the following differential equations:

P ′

n(t) = −(λ+ nµ)Pn(t) + λPn−1(t) + (n+ 1)µPn+1(t),(3.3)

P ′

0(t) = −λP0(t) + µP1(t),(3.4)

where

∞
∑

i=0

Pi(t) = 1, t ≥ 0(3.5)

and

0 ≤ Pn(t) ≤ 1, for t ≥ 0 and n = 0, 1, 2, ...,∞,(3.6)

with initial conditions: P0(0)=1 and Pn(0)=0, n=1, 2, 3, ..., ∞. Applying the z-transform

approach, we can obtain the transient distribution of M/M/∞ Riordan [14] :

P∞

n (t) =
mne−m

n!
,m ≡ m(t) = ρ(1− e−µt).(3.7)

For the time-dependent analysis of an M/M/s/s queue with constant arrival rate, we can apply

the truncation property approximately as follows:

P s
n(t) ≈

P∞

n (t)


k P
∞

k (t)
, k ∈ {0, 1, ...s}(3.8)

Notice that this equation will be close to the exact solution as time increases for small block-

ing probabilities. Also it is a good approximation for low blocking probabilities. Despite

its appealing closed-form solution, equation (3.8) is non-trivial to compute for large value

of s since it involves factorial terms which may cause numerical instability problems such

as overflows. So, we can adapt the well-known recursive formula from the steady-state as

follows:

B(k + 1, t) =
m(t)B(k, t)

k + 1 +m(t)B(k, t)
(3.9)

where B(s, t) is the probability that all s servers are busy at time t and B(0, t) = 1.

The M(t)/M/s/s can also be approximated by truncating the M(t)/M/∞ queue. This

method is referred to as the modified offered load (MOL) method and it was first proposed by
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Jagerman [6]. For the M(t)/M/∞ queue, the time-dependent blocking probability is given

by:

P∞

n (t) =
ρ(t)ne−ρ(t)

n!
.(3.10)

where ρ(t)=e−t
 t

0
λ(u)eudu. For the M(t)/M/s/s queue, the probability Pn(t) that there are

n customers in the system is:

P∞

n (t) ≈ P{q∞(t) = n|q∞(t) < s} =
ρ(t)n/n!

s

i=0 ρ(t)
i/i!

(3.11)

In this case, the following recursive formula can be used:

B(k + 1, t) =
ρ(t)B(k, t)

k + 1 + ρ(t)B(k, t)
(3.12)

with B(0, t)=1 as the initial condition. B(s, t) is the probability that all s servers are busy

at time t, P s
s (t). The truncated M/M/∞ provides an exact solution to an M/M/s/s queue

in the steady-state due to the reversibility property. However, this property is lost in the

nonstationary case [2]. Hence the truncated M(t)/M/∞ provides an approximate solution

to the M(t)/M/s/s. Massy and Whitt [10] developed analytical bounds on the error between

the MOL approximation and the exact solution of the M(t)/M/s/s queue. The computation

complexity of equation (3.10) and (3.12) is O(s).
Experiments showed that the actual blocking probability of the M(t)/M/s/s queue should

be less than 0.1 in order for the MOL to provide a good approximation, see Alnowibet and

Perros [3]. As expected, the MOL underestimates the blocking probability of a loss queue

with high load, i.e. when the exact blocking probability is high.

4. Numerical Solutions.

4.1. Differential Equations Solver. Equations (1.1)-(1.3) and (1.4)-(1.6) can be solved

numerically using an ODE (ordinary differential equation) solver. The numerical results in

section 2 were obtained using the ODE solver of Matlab 6.5, which can solve efficiently

an Erlang loss queue with a few hundreds servers. However, as reported in Moler et al.

[12], ODE solver may be very expensive. We also found that ODE solver is not suitable for

dimensioning.

4.2. The Fixed Point Approximation (FPA) Method . The fixed point approximation

(FPA) method was proposed by Alnowibet and Perros [3]. This method calculates numer-

ically the time-dependent mean number of customers and blocking probability functions in

a nonstationary loss queue. The FPA method was also extended to nonstationary queueing

networks of multi-rate loss queues and nonstationary queueing networks with population con-

straints, see Alnowibet and Perros [3]. The main idea of the FPA method is as follows:

Given a loss queue M(t)/M/s/s with time-dependent rate λ(t), the time-dependent aver-

age number of customers E[Q(t)] can be expressed as the difference between the effective

arrival rate and the departure rate at time t. That is:

E′[Q(t)] = λ(t)(1−Bp(t))− µE[Q(t)](4.1)

We note that the time-dependent mean number of customers is given by the expression:

E[Q(t)]=ρ(t)(1−Bp(t)), from which we can develop the following expression for the offered

load ρ(t):

ρ(t) = E[Q(t)]/(1−Bp(t)).(4.2)
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where

Bp(t) =
ρ(t)s/s!

s

i=0 ρ(t)
i/i!

(4.3)

Using equations (4.1)–(4.3), we can calculate the blocking probability iteratively as follows.

1). Choose an appropriate ∆t, final time Tf and tolerance ≤.

2). Choose initial conditions for E[Q(t)]. Set E[Q(0)]=0.

3). Evaluate λ(t) at t=0,∆t, 2∆t, ..., Tf .

4). Start with an initial blocking probability B0
p(t)=0, t=0,∆t,2∆t,...,Tf .

5). Set the iteration counter k=0.

6). Solve numerically for E[Qk(t)] using the following equation:

E[Qk(t+∆t)]=E[Qk(t)]+λ(t)(1−Bk
p (t))∆t− µE[Qk(t)]∆t.

7). Calculate ρk(t)=E[Qk(t)]/(1−Bk
p (t)),t=0,∆ t,2∆ t,...,Tf .

8). Calculate the blocking probability Bk+1
p (t)=[ρk(t)]s/s!/(

s
i=0[ρ

k(t)]i/i!),t=0,∆

t,2∆ t,...,Tf .

9). If ‖(Bk
p (t) − Bk+1

p (t))‖ < ≤, then Bk
p (t) has converged and the algorithm stops.

Else, set k = k + 1, and go to step 6).

The FPA algorithm does not require a closed-form expression for the arrival rate function.

It only requires that the arrival rate function be defined at time points equally spaced by ∆t.
In view of this, any arrival rate function can be used despite whether we know its closed-form

or not. Since this algorithm discretizes the arrival rate function, the continuity and differen-

tiability properties of the arrival rate function are not necessary. The computation complexity

of this algorithm to find blocking probability is O(sTf/∆t). In all the experiments the FPA

results were very close to the exact numerical results or within the simulation confidence in-

tervals. This leads to the conjecture that the blocking probability obtained by FPA is exact

(see, Alnowibet and Perros [2]). For dimensioning purpose, we need to slightly modify the

algorithm in order to obtain the capacity for any time t given a blocking probability threshold.

This can be done by adding an iterative procedure into the main algorithm.

5. The Large Deviation Approach. In this section, we obtain an expression for di-

mensioning the Erlang loss queue using the large deviation method. For stationary arrivals,

Mandjes and Ridder [9] have obtained approximate expressions for Pn(t), the probability

of having n customers at time t. This expression is extended in the case of nonstationary

arrivals. The large deviation theory is similar to the Central Limit theory (CLT). The CLT

governs random fluctuations only near the mean, which are of the order of δ/
√
n, where δ

is the standard deviation. Fluctuations which are of the order of δ are, relative to typical

fluctuations, much bigger: they are large deviations from the mean. They happen only rarely,

and so the large deviation theory is often described as the theory of rare events, that is, events

which take place away from the mean, out in the tails of the distribution. The main idea of the

large deviation approach for the nonstationary Erlang loss queue is as follows. An asymptotic

regime is obtained by scaling the arrival process. This is done by replacing λ(t) with nλ(t).
The number of sources active at time t are partitioned into the sources that were active at time

0 and are still active at time t, and the sources that became active in (0,t) and are still active

at time t. We then can apply Cramer’s theorem and Chernoff’s formula to obtain the result.

5.1. Stationary Arrivals. Assuming exponential service time distribution, Mandjes and

Ridder [9] obtained the following expression:

Ps(t) ≈ es(ln(γ(t))−γ(t)+1), γ(t) = λ1/µ(1− e−t)(5.1)
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where λ = sλ1 and s is the total number of servers.

Ps(t) can be better approximated using Bahadur-Rao approximation [9]. We have:

Ps(t) ≈
1√

2πsδθ
es(log(γ(t))−γ(t)+1), γ(t) = λ1/µ(1− e−t),(5.2)

where θ = −log(γ(t)) , δ2 = M
′′

(θ)
M(θ) and M(θ) = eγ(t)(e

θ
−1).

Mandjes and Ridder [9], pointed out that the Bahadur-Rao approximation (5.2) is more

accurate than (5.1). We note that the large deviation theory yields simple expressions of the

time-dependent blocking probability for stationary arrivals.

5.2. Nonstationary Arrivals. Let us assume that the service time is exponentially dis-

tributed with unit mean for nonstationary arrivals. Then expression (5.1) can be extended as

follows:

Ps(t) ≈ es(log(γ(t))−γ(t)+1)(5.3)

where γ(t) = e−t
 t

0
λ1(u)e

udu,λ(t) = sλ1(t).
The Bahadur-Rao approximation given by (5.2) can be extended as follows:

Ps(t) ≈
1√

2πsδθ
es(log(γ(t))−γ(t)+1),(5.4)

where γ(t) = e−t
 t

0
λ1(u)e

udu, θ = −log(γ(t)) , δ2 = M
′′

(θ)
M(θ) and M(θ) = eγ(t)(e

θ
−1).

The computation complexity of equation (5.2) and (5.4) is O(1).
For both stationary and nonstationary cases, the number of servers C for which the block-

ing probability is ≤ can be obtained using an iterative procedure: starting by the candidate

allocation C = n0, the candidate allocation is increased by one until the blocking probability

is below the threshold ≤.

6. Numerical Results. In FIG.6.1, we give the blocking probability calculated at a spe-

cific time t = 4.8 using four different methods for λ1(t) = 0.7 + 0.2sin(2πt). The time

t=4.8 was chosen because by that time the system is out of the transient state for the given

periodic arrival rate function. The initial condition was set to an empty system. The block-

ing probability is plotted in the logarithmic scale against the total number of servers s. The

graph labelled “LD” shows the results obtained from the large deviation theory using equa-

tion (5.3), the graph labelled “BR” gives the results obtained using the Bahadur-Rao equation

(5.4), and, the graph labelled “TR” gives the results obtained using equation (3.8) from the

truncated Markov process approximation. The exact solution is obtained using the fixed point

approximation (FPA).

Running more examples by varying the arrival rate with (high load, medium load, low

load), we note that the truncated Markov process approximation provides a very good ap-

proximation to the exact solution but underestimates the blocking probabilities. The large

deviations approximation differs considerably from the exact blocking probability and is less

accurate than the Bahadur-Rao approximation. Because of page limit, we do not provide all

the examples here.

In FIG.6.2, we show a dimensioning example for a communication link over 20 obser-

vation periods. We assume that the arrival rate is constant during each period. The values of

the arrival rates are given in FIG.6.2. We calculated the capacity, i.e., the number of servers,

iteratively so that at any time the blocking probability is less than 0.005. The dimensioning

results are shown in FIG.6.2, where we assume that all servers are free at time t=0. ‘BR’ rep-

resents the results obtained using the Bahadur-Rao equation (5.4), and ‘FPA’ gives the results
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FIG. 6.1. A comparison among the exact solution (Exact), the truncated Markov process approximation (TR),

the Bahadur-Rao approximations(BR) and the large deviations approximations (LD)

obtained using the fixed point approximation (see, Alnowibet and Perros [3]). The results

obtained using the other two methods, i.e. the truncated Markov process approximation and

equation (5.3) from the large deviation theory, are not shown because they have a large error.

We also carried out a variety of numerical results under different loads, and here we only

show a representative sample of these results, since they are all similar. We observed that

Bahadur-Rao (BR) approximation is very close to the exact results but it overestimates the

capacity. We note that both BR and exact allocated capacity follow the pattern of the arrival

rates.

7. Conclusions. In this work, we reviewed and compared various time-dependent analy-

sis techniques of a single loss queue with stationary and nonstationary arrivals. The aim of

time-dependent analysis is to dimensioning a link in a more efficient way.

It is difficult to answer the question “Which method is the best ? ”. One method maybe

preferable over the others when considering computation complexity and accuracy of the re-

sults. We have the following observations:

1) For stationary arrivals, the exact closed-form solution and the truncated Markov process

approximation are CPU efficient and easy to implement for medium size systems whereas the

large deviation approach is preferred if the system is large.

2)For the nonstationary arrivals:

If the arrival rate is a single continuous function, then the truncated Markov process ap-

proximation (MOL) and FPA method will be a good choice for medium size systems, and the

large deviation approach is a better choice if the system is large.

If the arrival rate is not a continuous function, the FPA method is a better choice.

The FPA method can work for both stationary arrivals and nonstationary arrivals and it

can be used for medium size systems. For large systems, we may consider using the Bahadur-
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FIG. 6.2. A dimensioning example of a single link with nonstationary arrival rates

Rao approximation for dimensioning purposes for both stationary and nonstationary cases

since it is the fastest and provides a tight upper bound.

The size of a medium and a large system is relative to the computer used. Our results

were obtained on a Pentum(R)4 PC with a 3GHz CPU and a RAM of 504MB. In this context,

a medium size system has less than two hundred servers, and a large size system has more

than two hundred servers.

For future work we will develop efficient methods for the dynamic dimensioning of an

entire network.
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