
JOURNAL OF IEEE INTERNET COMPUTING 1

Performance Analysis of Microservices Design

Patterns
Akhan Akbulut, Member, IEEE, and Harry G. Perros, Fellow, IEEE

Abstract—Microservices-based solutions are currently gaining
momentum because they do not have the disadvantages of
traditional monolithic architectures. Business interest in mi-
croservices is increasing since the microservices architecture
brings a lightweight, independent, reuse-oriented, and fast service
deployment approach that minimizes infrastructural risks. This
approach is at an early stage of its development, and in view
of this, it is important to understand the performance of its
design patterns. In this paper, we obtained performance results
related to query response time, efcient hardware usage, hosting
costs, and packet loss rate, for three microservices design patterns
practiced in the software industry.

Index Terms—Microservices, Design Patterns, Microservices
Architecture, Performance Analysis, Software Architecture

I. INTRODUCTION

THE service-oriented architecture (SOA) is the most

widely used concept in software design. This is because it

enables high service reusability, reliability, improved scalabil-

ity and availability, heterogeneity, and platform independence.

SOA is currently evolving to encompass microservices so that

to address problems related to the boundaries of the monolithic

architecture [1]. Application requirements have given rise to

the need for the lightweight and high scalability option pro-

vided by the microservices architecture. Microservices break

the logic of an application into a number of independent

services that run as separate processes. This approach can lead

organizations to the realization of a true SOA that will permit

business processes and data to become more available.

Enterprises that have recognized the benets of microser-

vices have started to replace their existing legacy software

with microservice-based solutions. In view of this, it is very

critical to accurately determine the application architectures

for effective use of this relatively new technology. The success

of microservices architecture depends on the use of design pat-

terns. A number of patterns have been proposed in MuleSoft’s

whitepaper [2], Arun Gupta’s blogs [3], and in some books

[4], [5], [6]. In this paper, we report on performance results

we obtained by implementing various applications using the

API Gateway, Chain of Responsibility, and Asynchronous

Messaging design patterns. The performance results are related

to the query response time, efcient hardware usage, hosting

costs, and packet loss rate.

A. Akbulut is with the Department of Computer Science, North Carolina
State University, NC, USA and also with the Department of Computer
Engineering, Istanbul Kültür University, Turkey. e-mail: aakbulu@ncsu.edu,
a.akbulut@iku.edu.tr
H. Perros is with the Department of Computer Science, North Carolina

State University, NC, USA. e-mail: hp@ncsu.edu

II. PERFORMANCE ANALYSIS

In our testbed, we used Node JS v.8.11.4 and Python v.4.7.0

for the implementation of the microservices, MongoDB v.4.0

for the data source platform, and Docker Compose v.1.22.0

for the containerization environment. The Docker environment

was deployed on an Ubuntu 16.04 LTS Base system in

the Virtual Computing Lab (VCL) of North Carolina State

University [7]. Docker containers were restricted by cgroups

so they do not consume the full resources of the testbed. They

only worked as virtually congured hardware.

All experiments use the following 3 main components; a

tester, an analyzer and web resources implemented in mi-

croservices related to the experiment. The tester generates

web customer requests that are executed by the microservice

environment. In all the experiments, we evaluated the response

time of an implemented application, i.e., the time it takes to

process a request, by subjecting the application to a maximum

load. To this effect, the tester was implemented as a multi-

threaded structure which generates a predetermined number

of threads. Each thread issues 3000 requests back-to-back in

an asynchronous manner, and when all the responses to the

requests are received, the thread is deleted.

Each thread records the time at which a request is issued

and the time at which the response to the request is received

in a text le. All the text les generated in the experiment

are processed by the analyzer in order to calculate the mean

and condence interval of the response time, and also the 95th

percentile of the response time. The latter metric is a value of

the response time such that only 5% of the sample response

times are higher. We note that this is a more meaningful metric

in Service Level Agreements (SLAs) than the mean, since it

provides a statistical upper bound. Other percentiles, such as

99%, can also be used.

A. Case Study 1- The API Gateway Design Pattern

This pattern consists of a gateway through which a number

of different sub-services are accessible. An API Gateway acts

as a single entry point for requests and based on the nature

of a request it invokes an appropriate sub-service [8]. In

addition to routing and aggregation, an API Gateway performs

two important tasks, namely, gateway ofoading and circuit

breaking. Case Study 1 is an implementation of an online

theater system using the API Gateway pattern on a 4 core

Intel CPU (2.0 GHz) with 16 GB RAM server. The system

consists of four services. the Movies service provides general

information and the Sessions service gives a list of the show

times of the movies and the theater name. The tickets service is



JOURNAL OF IEEE INTERNET COMPUTING 2

Fig. 1. Performance Results of Case Study I a)Mean and 95th Percentile of the Response Time vs Number of Threads, b)Efciency Curves Using the Mean
and the 95th Percentile of the Response Time, and c)Average Service Times for Different Number of Instances

used to purchase a ticket, and the Reservations service allows

a customer to reserve a seat for a show time of a movie.

All content and methods provided by the online theater

system application are accessed from two points, a store front,

and an API gateway. Each microservice executes a lightweight

REST mechanism in order to provide the necessary output to

the store front and the API Gateway. The API Gateway is

used by entities that do not need to access the visual elements.

For instance, a self-service kiosk ticketing device in a cinema

accesses the services via the API gateway.

Figure 1.a gives the mean response time, as a function of the

number of threads. The condence intervals are also plotted as

vertical lines. The 95th percentile and condence interval of

the observed response times for each number of threads is also

given in this gure. The condence intervals were computed

using the batch means method, with a batch size equal to 1000

observations.

The 95th percentile gives us an idea of the tail of the re-

sponse time distribution. The further away it is from the mean,

the longer the tail is. For instance, for a single thread, the

average response time is 3.82 ms, whereas the corresponding

95th percentile is 10.48 ms. Similarly, for 100 and 200 threads,

we have a mean response time of 399.89 ms and 1295 ms

respectively with a corresponding 95th percentiles of 2544.32

ms and 5077.85 ms. These numbers indicate a large tail of

the probability distribution of the response time, which is due

to the fact that we basically submit all the requests from all

the threads as soon as possible, thus creating a huge backlog,

which in turn causes the response time of the requests towards

the end of the queue to increase quite dramatically. We note

that the percentile of a performance metric is more meaningful

in SLAs than its corresponding mean.

Using the mean response times for the different number of

threads, we calculated the following efciency metric. Let Ri

be the mean response time when there are i threads. Then, we
dene the efciency metric Ei, as follows:

Ei = ((R1 ∗ i)/Ri) ∗ 100. (1)

Also, using the 95th percentile values R0.95,i we calculated

a similar efciency metric using the expression:

E0.95,i = ((R0.95,1 ∗ i)/R0.95,i) ∗ 100. (2)

Figure 1.b gives the two efciency plots as a function of

the number of threads. We observe that the efciency based

on the mean response time, Ei, increases from one thread to

18 threads, and then from 19 to 94 threads it continuously

decreases until at 94 it becomes equal to E1. Using this plot,

we classify the microservice implementation as high, low, and

not efcient, as follows. High efciency is achieved for the

range of threads from 1 to 94, since the efciency is over

100%. Low efciency is achieved from 95 to 141 threads,

since the efciency is between 100% and 75%. In this case,

the service time is slightly longer, but it is still acceptable.

Finally, for more than 142 threads, the efciency is less than

75%, and the service is classied as not efcient.

A slightly different picture emerges when we use the

efciency plot based on the 95th percentile of the response

time. High-efciency is achieved from 1 to 83 threads, and

low-efciency is achieved from 84 and 141 threads. The high-

efciency range is shorter than the one based on the mean

response time, since we use the 95th percentile of the response

time which is an upper bound. Both efciency plots have

the same cut-off of 141 threads, that corresponds to 75%

efciency considered as the lowest acceptable level for service

requirements.

Obviously, if we want to decrease the non-efcient zone, we

need to use more than one instantiation of the microservice

when the number of threads exceeds 141. To that effect,

Figure 1.c gives the mean response time of the microservice

implementation for k instantiations, where k = 1, 2, 3, 4, 5.
Horizontal scaling allows the average service time to decrease

or remain constant as the number of threads increases. A sim-

ilar set of curves can be obtained using the 95th percentile of

the response time. In a monolithic implementation, scalability

cannot be performed after a certain level even if the resources

are enhanced. Conversely, microservice architectures offer

scalability at a very high level by replicating microservices.

We note that the efciency of a microservice implemen-

tation depends on the number of co-processors. Multi-core

processors are appealing to microservice architectures, but

they incur a higher hosting cost. Another important factor is

the misconguration of RAM can cause excessive memory

swapping which leads to longer response times.

The case study data reveal that the most ideal architecture



JOURNAL OF IEEE INTERNET COMPUTING 3

Fig. 2. Testbed a) Case Study 2, b) Case Study 3

for an equally balanced scenario is The API Gateway design

pattern. It also provides exibility when we want to manage re-

quests from multiple channels. It facilitates the execution logic

of synchronous communications between equally balanced

services and provides scale-up artifacts. Separation of concerns

along with distributing the load over multiple service instances

provides the ultimate black boxed service experience in a

polyglot conguration. Polyglot programming benets from

services developed with different programming languages over

various stacks. The API Gateway design is typically used

as a point of contact layer among other architectures. In

fact, a microservices ecosystem without an API Gateway is

considered as a bad practice or an antipattern. A similar study

to this scenario [9] focused on what-if analysis and capacity

planning of microservices. It is also possible to predict the

user load [10] using these analyzes and monitoring metrics.

Finally, version control can be performed with this approach

[11].

B. Case Study 2 - The Chain of Responsibility Design Pattern

In the second case study, we implemented an image editing

application using the Chain of Responsibility pattern. This

design pattern consists of a collection of sub-services designed

to work together in order to process a request. The sub-services

are linked together sequentially, so that one sub-service’s

output becomes input to the next sub-service. In this scenario,

users submit a colored image as an input and request to have it

converted to black and white. The application is triggered by

rst delivering requests from the web channel or API channel

to the Adjuster microservice. This microservice, which is the

rst node of the chain, checks the size of the submitted image

and resizes it if it is bigger than 1920 x 1080. The modied

image is transferred to the Converter microservice in byte array

form for the next operation. The second node is responsible

for converting the image into a grayscale form.

The Converter microservice passes this image to the Labeler

node which applies a watermark onto the image. Finally, the

resized, grayscaled and watermarked image is returned to

the thread that initiated the request. All the services in this

scenario were implemented using the Python OpenCV image

editing libraries. A diagrammatic representation of the testbed

is shown in Figure 2.a.

In this case study, we compared the CPU and RAM

requirements of the microservice implementation against a

composite implementation for three different sets of threads.

The results obtained are given in Table I. The column la-

beled “Chain of Responsibility” gives the RAM and CPU

requirements per microservice and also the total for all three

microservices for 10, 20, and 50 threads. The column labeled

“Composite” gives the RAM and CPU requirements for the

composite implementation for the same number of threads.

The CPU and RAM for the composite implementation were

obtained experimentally by varying them until the throughput

of the composite implementation became equal to that of

the microservice implementation. The third column labeled

“Hosting Diff” gives the percentage by which the hosting

cost will increase if we used the composite implementation

based on hosting prices from Amazon web services [12]. In

all considered scenarios the CPU’s utilization was 10-40%.

The same application may require different RAM and CPU

for different design pattern implementations. Therefore, the

design pattern is an important decision that has a direct impact

on hosting costs. Table I shows that the cost difference for a

different number of users varies between 21.25% and 33.18%.

For enterprise-level applications, this difference can amount

to thousands of dollars. Even if a private cloud is used for

hosting microservices, using an accurate design pattern for an

application contributes to green computing.

A megaservice [13] is a service that provides many function-

alities. It is an antipattern and it should be decomposed into

multiple separated microservices. When a multiple application

logic developed via a single code-base is scaled up, all

parts are scaled up even those that do not require additional

resources. However, if each application logic is implemented

as a separate microservice, scale-ups are made for only the



JOURNAL OF IEEE INTERNET COMPUTING 4

TABLE I
DOCKER CONTAINER PERFORMANCE EVALUATION ON COMPOSITE VERSUS CHAIN OF RESPONSIBILITY PATTERN

Threads Composite Chain of Responsibility Hosting Diff.
α256MB - 800Mhz β1280MB - 4.0Ghz γ256MB - 800Mhz

10 2560MB vRAM - 2* 4.0Ghz vCPU
Total: 1792MB vRAM - 2* 2.8Ghz vCPU

30%

α524MB - 1.8Ghz β2620MB - 3* 3.0Ghz γ524MB - 1.8Ghz
20 5376MB vRAM - 4* 4.0Ghz vCPU

Total: 3668MB vRAM - 3* 4.2Ghz vCPU
21.25%

α1344MB - 4.2Ghz β6720MB - 5* 4.2Ghz γ1344MB - 4.2Ghz
50 13312MB vRAM - 10* 4.4Ghz vCPU

Total: 9408MB vRAM - 7* 4.2Ghz vCPU
33.18%

αAdjuster Microservice, βConverter Microservice, and γLabeler Microservice

needed entities, so that less resource is consumed. The ideal

microservice design pattern for functions that process consecu-

tively shared data is the Chain of Responsibility design pattern.

In case study II, we observed that this architecture allows us

to scale back-end services independently, with a gain on the

hardware usage of around 30% compared to the megaservice

equivalent structure. The most important issue to guard against

in this architecture, is the possibility of excessively long chains

that may lead to a spaghetti structure.

C. Case Study 3 - The Asynchronous Messaging Design

Pattern

The synchronous communication provided by the REST

mechanism is simple and well-known, easy to test, and

rewall-friendly. However, it is not ideal for some scenarios

because of the blocking of the clients. In view of this, asyn-

chronous messaging and event-driven communications can

be implemented to propagate changes between microservices.

The asynchronous messaging design pattern is preferred when

there is a large volume of data that needs to be processed

and also when no immediate response is expected. In this

case study, we retained the Reservations microservice from the

rst case study and we added a Builder node that generates

pdf documents. The Reservations microservice transfers user

information, such as, name, surname, movie name, show time,

and seat number, to the Builder which generates a ticket

in pdf format. The case study was implemented using the

Asynchronous Messaging design pattern, as shown in Figure

2.b. A queue structure is introduced between the Reservation

and the Builder microservices using RabbitMQ since the

service time of a request in the Builder is much longer than

that in the Reservation. A queue in RabbitMQ is an ordered

collection of messages which are enqueued and consumed in

a FIFO manner. The scenario ends with the transfer of the

pdf-formatted ticket to the client. The reason we implemented

RabbitMQ instead of any other message broker products is

because of it provides the state of the messages (consumed,

rejected, acknowledged, etc.) in the ecosystem. Most of the

message brokers are stateless and assume that the consumer

keeps track of what has been consumed. Furthermore, Rab-

bitMQ supports several protocols such as MQTT, STOMP etc.

for processing messages in addition to AMQP.

The goal of Case Study 3 is to demonstrate the usefulness

of the Asynchronous Messaging design pattern for transaction-

based scenarios involving processes with disparate service

times. The capacity of the queue implemented using Rab-

bitMQ is limited since it is allocated a xed amount of

memory. In view of this, messages sent from the Reservations

sub-process to the Builder sub-process during the time that the

queue is full, are lost. In view of this, the queue size has to be

xed so that to minimize the queue overow. When we inspect

the results for the Asynchronous Messaging implementation

for two different congurations, we observed that packet-

losses are minimized with lower congurations. In the rst

conguration, we allocated 8.192 GB vRAM and 4 cores of

3.5 GHz vCPUs and measured the packet loss in the case

where a single thread generated 1000 requests back-to-back.

We note that the packet loss was 26% of all packets sent

to the queue by the Reservations sub-process. Subsequently,

we slowly increased the vRAM and vCPU allocation until

no packet loss was observed. This occurred when we have

allocated 122.288 GB vRAM and six 4 GHz vCPUs.

We compared Case 3 to an equivalent composite imple-

mentation of the Reservations and Builder microservices. Like

the composite structure in Case study 2, the megaservice that

houses both Reservations and Builder microservices’ applica-

tion logic should be scaled-up according to the needs of the

Builder part, since it performs more complex computations.

This causes an additional unwanted resource allocation to

Reservations part as well. The input buffer of each sub-

process is also limited due to the nite amount of memory

allocated at conguration time. For this implementation, we

kept increasing both the vRAM and vCPU allocation until no

packets were lost at the Builder. The resulting conguration

is 131.073 GB vRAM and ten 4.0 GHz vCPUs. We observe

that the Asynchronous Messaging design pattern requires less

memory and CPU in order to achieve zero loss.

An important constraint of data centers is energy consump-

tion. An improper software architecture may increase the CPU

utilization, thus increasing the energy consumption. Barroso

and Holzle [14] observed in 2007 that processors in data

centers operate mostly within a utilization range of 10% to

50%. Today, for competitive data centers, this gure is up

to 60%. The use of Dynamic Voltage and Frequency Scaling

(DVFS) power management mechanisms lead to signicant

energy reductions (up to 40%) and power savings (up to 20%)

[15] for the same utilization levels. In our experiments, we

observed that the presence of a messaging system can help

to maintain an optimal CPU utilization. In Figure 3 we give

the CPU utilization with and without the messaging queue for

the rst 100 sec. In the graph on the left, we observe a 100%



JOURNAL OF IEEE INTERNET COMPUTING 5

utilization for the case when there is no messaging queue in

front of the Builder. In the graph on the right, we see that

the CPU settles down to around 50%. This was achieved by

conguring appropriately the egress rate of RabbitMQ via its

management plugin. Operating at 100% utilization causes an

unwanted energy consumption.

Fig. 3. Builder Microservice Utilization for the API Gateway and Asyn-
chronous Messaging Patterns a) Utilization w/o Queue, b) Utilization w Queue

Apart from orchestrating an efcient operation of consumer

services, the messaging system can handle requests from

various channels with different operating logic. Similar to

the FIFO approach, priority queues can be dened which

allow different priorities according to different user types.

In practice, RabbitMQ implements a queue over a single

processor. This is because real-life scenarios are implemented

in multiprocessor environments with multiple instances of

consumers and queues. It should be noted that in general

having a single queue in the ecosystem is considered an anti-

pattern and it has a negative effect on resource utilization.

If the queue service is insufcient and cannot be mirrored,

it may be possible to respond fairly to requests from all the

channels using a Round-and-Robin approach. The benets of

using RabbitMQ is also documented by Hong et. al. [16]. In

Case Study III, we observed that, with the use of a message

queue like RabbitMQ, the most important gain is redundancy

via persistence. Such messaging systems allow requests to be

stored in the system until they are processed by appropriate

microservices. They are also useful in the case where microser-

vices do not have access to adequate CPU and RAM resources.

This architecture allows a more energy efcient ecosystem for

hosting non-time-critical services. Also, the use of a queue

allows non-real time operations to be batched and executed

together. For example, it is more efcient to batch 100 database

commands and execute them all together rather than do them

one at a time. In addition, different queueing models can be

used so that to meet business needs.

III. LESSONS LEARNED

The impact of adopting a microservices architecture cannot

be seen immediately. In order to make a complete evolution,

practitioners should carry out the following steps. The unit

testing action is the rst step for verifying that the services

work as intended. This API functionality test covers overall

application functionality in the service and completely exam-

ine the API with multiple test cases. Using automated testing

frameworks such as NUnit or JUnit we can increase the depth

and scope of the tests and also inspect the different functional

pieces of the application. In addition, load tests should be

performed periodically to asses the application topology. Load

tests are useful to nd the bottlenecks in the ecosystem and

help to congure the accurate number of running instances

of the entities. It is important to use SLA and also have

some knowledge of the user behavior so that to characterize

better the trafc amounts and usage patterns, which enables

us to perform more realistic tests. However, almost all load

testing products (e.g. JMeter) may produce false negatives due

to caching and session management congurations. Software

architects can also benet from simulators like Hovery or

Vagrant to evaluate different congurations without stopping

or interfering the ecosystem’s trafc. Running such simula-

tions are necessary in order to expose the nonscalable modules

of the ecosystem and prevent meltdowns associated with

high amounts of user trafc in live-usage. Finally, testing

the resiliency of the microservices uncloaks the potential

infrastructure failures. Netix’s open-source application Chaos

Monkey is a good alternative to observe the destructive behav-

ior of underlying resources. No matter which architecture is

preferred for the application, the entire ecosystem should be

orchestrated with a system like Kubernetes, Mesosphere or

Docker Swarm along with an infrastructure-level monitoring

system. Scalability and performance are two different metrics,

but they are intimately entwined. Therefore, monitoring the

system will give us valuable and critical insights. Nevertheless,

a favorable scalability and performance are not sufcient

criteria for adopting a microservices architecture, unless we

gain agility in the development team and the deployment

infrastructure can become fully automated.

IV. CONCLUSIONS

Successful microservice implementations in enterprises,

such as Netix and Spotify, provide a motivation for other

organizations to adopt this technology. However, the needs

of the organization should be taken into consideration while

choosing a microservices architecture. In general, there is no

single microservices pattern that is better than the others.

Rather, each design pattern performs better in different sce-

narios. Complex architectures come with long-term develop-

ment cycles and additional license expenses for third-party

applications. In addition, the employment of more qualied

developer and test personnel in the team is another factor that

increases the total cost. However, it should not be forgotten

that these architectures increase productivity and drive down

costs because they are energy efcient in the long term. The

easiest way to evaluate the success of microservices is to

ensure that they meet or exceed monolithic pre-migration

performance. Microservices architectures are still immature,

and therefore, best practices of their use are critical to their

successful adaptation and incorporation in the future of SOA.

REFERENCES

[1] O. Zimmermann, “Microservices tenets,” Computer Science-Research

and Development, vol. 32, no. 3-4, pp. 301–310, 2017.
[2] I. MuleSoft, “Whitepaper: The top six microservices patterns,”

https://www.mulesoft.com/lp/whitepaper/api/top-microservices-patterns,
Oct. 2018.



JOURNAL OF IEEE INTERNET COMPUTING 6

[3] A. Gupta, “Microservice design patterns,”
http://blog.arungupta.me/microservice-design-patterns/, Oct. 2015.

[4] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice

architecture: aligning principles, practices, and culture. O’Reilly
Media, Inc., 2016.

[5] S. Newman, Building microservices: designing ne-grained systems.
O’Reilly Media, Inc., 2015.

[6] C. Richardson, “Microservice patterns,” 2017.
[7] H. E. Schaffer, S. F. Averitt, M. I. Hoit, A. Peeler, E. D. Sills, and M. A.

Vouk, “Ncsu’s virtual computing lab: A cloud computing solution,”
Computer, vol. 42, no. 7, 2009.

[8] V. F. Pacheco, “Microservice patterns and best practices: Explore pat-
terns like cqrs and event sourcing to create scalable, maintainable, and
testable microservices,” 2018.

[9] H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu, “Efciency
analysis of provisioning microservices,” in 2016 IEEE International

Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 2016, pp. 261–268.

[10] L. Bao, C. Wu, X. Bu, N. Ren, and M. Shen, “Performance modeling
and workow scheduling of microservice-based applications in clouds,”
IEEE Transactions on Parallel and Distributed Systems, 2019.

[11] A. Akbulut and H. G. Perros, “Software versioning with microservices
through the api gateway design pattern,” in 2019 9th International

Conference on Advanced Computer Information Technologies (ACIT).
IEEE, 2019, pp. 289–292.

[12] “Aws fargate pricing,” https://aws.amazon.com/fargate/pricing/, Sep.
2018.

[13] R. Shoup, “Craft conf 2015, day 3 – from the monolith to microser-
vices: Lessons from google and ebay,” https://codeandtalk.com/v/craft-
2017/61479577, 2015.

[14] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, no. 12, pp. 33–37, 2007.

[15] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis,
“Power management of datacenter workloads using per-core power
gating,” IEEE Computer Architecture Letters, vol. 8, no. 2, pp. 48–51,
2009.

[16] X. J. Hong, H. S. Yang, and Y. H. Kim, “Performance analysis of
restful api and rabbitmq for microservice web application,” in 2018 In-

ternational Conference on Information and Communication Technology

Convergence (ICTC). IEEE, 2018, pp. 257–259.

Akhan Akbulut is a Postdoctoral Researcher in
the Computer Science Department at North Carolina
State University. His research interests focus on the
design and performance optimization of software-
intensive systems, Internet architectures, and broad-
ening participation in cloud computing research.
Akbulut received a PhD in Computer Engineering
from the Istanbul University, Turkey.

Harry G. Perros is a Professor of Computer Sci-
ence, an Alumni Distinguished Graduate Professor,
and the co-founder and program coordinator of the
Master of Science degree in Computer Networks at
NC State University. He is an IEEE Fellow and he
has published extensively in the area of performance
modelling of computer and communication systems,
and has organized several national and international
conferences. He has also published six print books
and an e-book. His current research interests are
in the areas of resource allocation under QoS, IoT

analytics, and queueing theory.


