
Software Versioning with Microservices
through the API Gateway Design Pattern

Akhan Akbulut*
Department of Computer Engineering

Istanbul Kültür University
Istanbul 34158, Turkey

a.akbulut@iku.edu.tr

Harry G. Perros
Department of Computer Science
North Carolina State University

Raleigh, NC 27606, USA
hp@ncsu.edu

Abstract—The microservices architecture is a relatively new
approach in implementing service-oriented systems. This cloud-
native architectural style enables the implementation of loosely
coupled, agile, reuse-oriented, and lightweight services instead of
monoliths. It also eliminates vendor and/or technology lock-ins. A
modification to a small code segment for monoliths may require
the building and deployment of a completely new version of
the software. However, the modular form of microservices allows
solving software versioning in a polyglot manner. In this paper, we
extend the well-known microservice design pattern API gateway
with a view to managing the virtual hardware configuration of
containers. Specifically, using the proposed approach, the service
capacity in the requested version of the service is orchestrated
adaptively in compliance with a service-level agreement. In our
tests, we found that the proposed version management approach
reduced the hosting cost by 27% compared to static or rule-based
scaling.

Index Terms—Microservices, Software Versioning, Version
Management, API Gateway, Design Pattern, Container Sizing,
Scaling

I. INTRODUCTION

As software development practices continue to evolve, the
debate of using microservices to migrate traditional monolithic
architectures will only become more pronounced. Microser-
vice architectures allow developers to split applications into
distinct independent services, each having individual logic that
can be maintained and served by the different development
team.

RESTian applications are by far the most prominent ar-
chitectural style used today to expose services for manag-
ing requests from multiple channels. It utilizes the power
of HTTP instead of more complex protocols like RPC or
SOAP. However, updating the services can be a challenge
if an accurate versioning method is not employed by the
development team. At fined-grained level, software versioning
should be supported with intelligent mechanisms.

In the case of governing multiple versions of the same
service in the ecosystem, a dynamic management mechanism
should be employed. For this reason, we have developed a
solution that can dynamically administrate the version control
and execute the scaling management of services within the

*A. Akbulut is also with the Department of Computer Science, North
Carolina State University, Raleigh, NC 27606, USA, email: aakbulu@ncsu.edu

environment. The contribution of this paper is three-fold, as
follows:

i. We compiled the state-of-the-art versioning approaches
for microservices architecture currently practiced in the
software industry.

ii. We showed that version control can also be used to
improve the scaling process of microservices.

iii. We proposed an adaptive API versioning scheme that
reduces the hosting costs of the microservices ecosystem.

The remaining of this paper is organized as follows. In
Section 2, we explain software versioning in microservices
architecture. Section 3 presents the key ideas and methodology
of our proposed approach. Section 4 reports its performance
with thorough experimental tests. Section 5 concludes the
paper and discusses future works.

II. SOFTWARE VERSIONING WITH MICROSERVICES

The world of today hosts digital systems whose require-
ments change frequently. Software versioning is used to
respond rapidly to these superseding requirements without
service interruptions. In addition, version control plays an
important role in software projects developed by multiple
teams that are constantly changing/updating source codes [1].
In systems that continuously evolve, the provision of different
versions for the same service or module is considered an
anti-pattern and bad practice [2]. However, in some cases,
more than one version of the same service may be required.
For example, for users who cannot upgrade their mobile
device’s operating system to a newer version due to hardware
or developer limitations, old generation mobile application
services are be offered with the new release services as well.
For a variety of reasons, different versions and forms of the
same services may be required for different platforms. If the
ecosystem with such requirements is not orchestrated by some
complex control mechanism, the delivery and maintenance of
the service maybe problematic.

The software industry desires to build systems that can
be managed at the component level to reach highest degree
of maintainability and scalability. Microservices [3]–[5] now
recommends the use of lightweight, independently deployable,
and API-based services as the most up-to-date presentation of
the service-oriented architecture (SOA). This approach also



offers high applicability for version management. Different
versions of the same component can be offered with employ-
ment of microservices in a coordinated manner. API versioning
has two different approaches to meet every aspect of software
requirements.

• Versioning in the URI : This approach is semantically
meaningful since it uses the version information in the
Uniform Resource Identifier (URI). A simple example
of this might look like http://v1.example.com/service/ or
http://api.example.com/service/v1/. The representation of
an API is immutable, and a fresh URI space needs to
be created, such as, http://api.example.com/service/v2/,
with the publication of a new version. Netflix uses a
different form of URI versioning including query strings like
http://api.netflix.com/catalog/titles/movies/70115894?v=2.0..
This allows the development team to update a single resource,
instead of the full API. The primary disadvantage of using
URI versioning is dealing with a very large URI footprint
which may become unmanageable in the long run. Also,
there is no easy way to simply evolve a single resource which
results with inflexibility.

• Versioning in the HTTP Header : If the version
information in the URI is not intended to be displayed, a
version-free URI can be offered by providing custom headers
of HTTP like Request Header: Api-version: 2 or Accepts-
version: 1.0. With this approach, the URI is clean and not
cluttered with versioning parameters as proposed in the URI
versioning scheme. Utilizing header versioning allows services
to be updated with a high degree of transparency, and end-
users can migrate to new versions easily. In the same way
the Accept Header spec can be modified for different custom
vendor media types, and for parameters to be passed to create
a content negotiation action. The most common problem of
this approach is dealing with caches and proxies. The Vary
HTTP header must be used for both client and the server
in order to eliminate caching-related problems. Also, if the
requests are not carefully constructed, routing faults may arise.
Compared with URI-versioned APIs, the header versioning
technique outputs less accessible artifacts and it makes it more
difficult to test and debug an API using a browser.

Many developers prefer to employ version identifiers in
URIs instead of HTTP headers, because of the convenience
of using URIs without headers, especially in the browser. But
the only thing that does not change is that the services offered
in the back-end are accessed through an API gateway pattern
as shown in Figure 1.

Each API versioning strategy has its own cons and pros
regarding feasibility, deployment plan, client attributes, and
server capacity. No matter which approach is preferred, version
numbering has a three digit general semantic like x.y.z where
x corresponds to major, y minor, and z patch revisions. A
major revision is applied when the development team decides
to make changes that are not compatible with the previous
version. Minor revisions are for improvements or optimization
of resources in a backward-compatible manner. Therefore, in
case of need, requests can be redirected to services with minor

Fig. 1. Microservice API Versioning

revision differences. Finally, patches are applied to fix bugs or
defects of the components.

III. METHODOLOGY

Our proposed methodology extends the API Gateway design
pattern of the Microservices architecture along with modifying
the Gateway entity by installing several functionalities, such
as, intelligent routing, observing other ecosystem entities, and
scale up or down services based on fuzzy logic. Traditional
Gateway entities are mostly responsible for filtering spam
calls, routing the requests to proper back-end services, circuit
breaking, and offloading [6], [7]. From this perspective, our
proposal increases the load on the Gateway, but it offers an
alternative solution to version management.

The fuzzy-based API Gateway operates a logic of two input
variables and one output variable. The two input variables
are a) the number of requests from the clients and b) the
CPU utilization of the back-end microservice that houses the
requested version. The first input is a non-negative integer,
and the second one is expressed as a percentage. The output
variable indicates the action that should be taken, and it takes
the values

〈
N−−, N−, N0, N+, and N++

〉
. N+ and N++

means that one respectively two additional instances of the
requested service should be deployed in order to cope with
the overload. N0 means no action should be taken. That
is, the load has not changed and the current configuration
should not changed. In the opposite direction, N− and N−−

means that one respectively two unused nodes should be
removed from the ecosystem. We note that we only focus
on horizontal scaling as a way of adjusting the capacity of
microservices. We did not consider vertical scaling achieved
by increasing or decreasing the CPU and RAM capacities of
existing microservices. Unlike virtual machine virtualization
[8], container virtualization can deploy microservices within a
few seconds.

The primary input, the CPU utilization, is a parameter
that directly affects energy consumption. Barroso et. al. [9]
investigated the employment levels of CPU in data-centers



and found that processors operate mostly within a utilization
range of 10% to 50%. The reason for adopting these levels
is to benefit from the use of Dynamic Voltage and Frequency
Scaling (DVFS) power management mechanisms that provide
significant energy reductions (up to 40%) and power savings
(up to 20%) [8]. Based on these findings, we define the
membership functions: LI (Light), ID (Ideal), ST (Strong), and
IN (Intense), as shown in Fig.2. Since we want to benefit from
low level CPU utilization, we have identified the use of more
than 40% as a ST and IN situation.

Fig. 2. Membership functions of the input variable CPU utilization

The other system input, the number of requests, vary over
time and if the service capacity is not enough to handle the
load, then there may be long processing times. On the other
hand, keeping a higher number of services than necessary,
yields an unwanted hosting cost. To determine the ideal load
for a single microservice we conducted several experiments
on the Virtual Computing Lab (VCL) of North Carolina State
University [10]. With reference to our experiments we defined
the membership function of the number of requests as ID
(Ideal), HE (Heavy), EX (Extreme), and MA (Maximal), as
shown on Fig 3.

With the proposed method, we aim at keeping the service
time as committed in the service-level agreement (SLA) while
at the same time minimizing the hosting costs.

Fig. 3. Membership functions of the input variable number of requests

Table I describes the relationship between two input param-
eters, CPU utilization and the number of requests, and output
parameter, scaling action. Using this table fuzzy production
rules can be obtained to run the execution logic.

IV. RESULTS

To evaluate the proposed methodology, we developed two
back-end services for a Unity based mobile application.
Both services were deployed using the Docker environment

TABLE I
KNOWLEDGE BASE FOR THE FUZZY-SYSTEM

LI ID ST IN

ID N0 N0 N0 N+

HE N0 N+ N+ N++

EX N− N0 N+ N++

MA N−− N− N+ N++

[11]. The first version is designed for the Android 6v.0
Marshmallow and the second is for the Android v8.0 Oreo
mobile operating system. Since the second service is not
compatible with older versions of Android users, their requests
are forwarded to the first one. Both services are developed
with NodeJS platform supported with MongoDB document-
oriented databases. The enhanced API gateway entity was
enhanced with the fuzzy-based auto-scaling feature so that
to manage the back-end microservices. In order to generate
the demand, we have also developed a client application that
generates requests to these back-end services with different
densities at different times. The proposed fuzzy-based auto-
scaling scheme is compared with a static configuration with
manual-scaling.

We conducted three experiments, each lasting for 5 hours,
for each of the three scaling techniques, ie., manual, rule-
based, and fuzzy-based. In the case of manual scaling, an
administrator monitors the load of the microservices and scales
up or down the services accordingly. For auto-scaling, a
rule-based approach is implemented with certain thresholds.
Finally, our fuzzy-based scaling technique orchestrates the
ecosystem via an API gateway microservice. For each experi-
ment, the client application created the same synthetic demand
for the microservices, which was in the form of concurrent
HTTP requests. The results obtained are shown in Figure 4.
The y-axis gives the capacity of the system, expressed in
number of users that it can serve, as it is modified by a scaling
technique over time. It is obtained by calculating the number
of active containers and then multiplying it by 50. The blue
line shows the demand in terms of number of users.

Our experimental scenario is based on a system that serves
around 300 users on average and 500 to 600 users at peak-
times. Since we used a container with 2 vCPU and 4GB RAM
which is capable of serving 50 users at a time, we decided
that we wanted no fewer than 7 nodes and no more than
50 in the auto-scaling policy. Ultimately, unlike the manual-
scaling, the auto-scaling approach can prevent service loss
during the traffic spike which hits around 13:00 hours by
launching additional service instances on time. Manual-scaling
missed the peak-traffic and caused slow service so that some
users could not be served. After the peak, the administrator
cannot react on time to reduce the number of instances and
produced unnecessary hosting costs. Our proposed scaling
technique performed better in scaling back-end microservices



Fig. 4. Scaling of the Microservices Over Time

in changing demand. It scaled services more responsively
than the auto-scaling option. The prominent feature of our
approach is that it does not need to know the intensity of
the load on the back-end microservices. As all traffic passes
through the API gateway, it knows instantaneously the service
capacity of all entities in the ecosystem. For the auto-scaling
or dynamic-scaling technique, certain metrics of all services
such as CPU, memory, and network utilization, must be
continuously monitored. There is a late reaction of the auto-
scaling service, because it has a 5-minute refresh interval.
Also, another disadvantage is that the health check process
generates an overhead and sometimes it is not possible to work
during the time the system is overloaded. This may cause the
system to drop that node because the health check is not able
to return the result.

During the experiments, we aimed to serve the clients
between 20 and 30 ms per request. In accordance with this
bound, we designed to operate the ecosystem with minimum
hosting costs. As can be seen from Table II, our proposed ap-
proach and auto-scaling meet the SLA requirements. However,
the average service time is longer with manual-scaling due to
its inability to scale up microservices in time. In addition,
the energy consumption is increased with aggregated CPU
utilization.

TABLE II
EXPERIMENTAL RESULTS

Scaling Technique Response Time (avg) Hosting Cost
Manual-Scaling 41ms 48% more

Auto-Scaling 24ms 27% more
Our Approach 23ms -

In terms of hosting costs, calculated using AWL pricing, our
approach offered the lowest run time cost. The auto-scaling
technique has a 27% more costly hardware allocation. We
observed that the manual-scaling approach is not applicable

to systems with a varying demand. It allocated 48% more
resources for microservices for the same scenario.

V. CONCLUSION

Because mobile users update their applications at different
frequencies, versioning of APIs become more important than
others. With several different versions of the application run-
ning in the live, the server needs to consolidate and handle
the various requests coming in from new and legacy users
alike. Sizing the configuration of APIs for different versions is
critical and auto-scaling systems should be deployed in order
to orchestrate the requests for different versions. Otherwise,
systems could crash during irregular traffic patterns or the
server load spikes at unexpected times. In this paper, we pro-
posed an API versioning scheme that reduces the hosting costs
of the microservices ecosystem with employing fuzzy-logic
in adjusting service capacity as needed. The well-known API
gateway design pattern is enhanced to orchestrate the requests
for different versions of APIs and compared with auto-scaling
technique our proposed approach runs the ecosystem with 27%
less hosting cost. It provides a truly hands-off approach to
scaling while ensuring that demand from the users is met in
a timely fashion. Microservices have gained prominence as
the most recent form of SOA and with the employment of
microservices architecture, the software versioning is easier to
implement than ever. But in order to run the different versions
together in harmony, scaling and version management should
be realized with a resourceful approach. As a continuation
of this research, we are planning to implement a neuro-fuzzy
[12] routine to dynamically update the knowledge-base as the
requirements and systems change over time.

REFERENCES

[1] J. Loeliger and M. McCullough, Version Control with Git: Powerful
tools and techniques for collaborative software development. “O’Reilly
Media, Inc.”, 2012.

[2] S. Fowler, Production-Ready Microservices. “O’Reilly Media, Inc.”,
2016.

[3] J. Lewis and M. Fowler, “Microservices - a definition
of this new architectural term,” [Online]. Available
https://martinfowler.com/articles/microservices.html, Mar. 2014.

[4] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” in Present and Ulterior Software Engineering. Springer, 2017,
pp. 195–216.

[5] O. Zimmermann, “Microservices tenets,” Computer Science-Research
and Development, vol. 32, no. 3-4, pp. 301–310, 2017.

[6] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
architecture: aligning principles, practices, and culture. O’Reilly
Media, Inc., 2016.

[7] S. Newman, Building microservices: designing fine-grained systems.
O’Reilly Media, Inc., 2015.

[8] B. Familiar, Microservices, IoT and Azure: leveraging DevOps and
Microservice architecture to deliver SaaS solutions. Apress, 2015.

[9] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a computer:
An introduction to the design of warehouse-scale machines,” Synthesis
lectures on computer architecture, vol. 8, no. 3, pp. 1–154, 2013.

[10] H. E. Schaffer, S. F. Averitt, M. I. Hoit, A. Peeler, E. D. Sills, and M. A.
Vouk, “Ncsu’s virtual computing lab: A cloud computing solution,”
Computer, vol. 42, no. 7, 2009.

[11] “Docker - enterprise container platform,” [Online]. Available
https://www.docker.com/, May 2019.

[12] K. Shihabudheen and G. Pillai, “Recent advances in neuro-fuzzy system:
A survey,” Knowledge-Based Systems, vol. 152, pp. 136–162, 2018.


